Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gut ; 72(6): 1101-1114, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36191962

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN: Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS: In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION: Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.


Asunto(s)
Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Nanopartículas , Ratones , Animales , Enfermedad de Crohn/genética , Enfermedad de Crohn/complicaciones , Linfocitos T CD8-positivos/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colitis/prevención & control , Inflamación/complicaciones , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
2.
Methods Mol Biol ; 2060: 111-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31617175

RESUMEN

HSV-1 amplicon vectors have been used as platforms for the generation of genetic vaccines against both DNA and RNA viruses. Mice vaccinated with such vectors encoding structural proteins from both foot-and-mouth disease virus and rotavirus were partially protected from challenge with wild-type virus (D'Antuono et al., Vaccine 28:7363-7372, 2010; Laimbacher et al., Mol Ther 20:1810-1820, 2012; Meier et al., Int J Mol Sci 18:431, 2017), indicating that HSV-1 amplicon vectors are attractive tools for the development of complex and safe genetic vaccines.This chapter describes the preparation and testing of HSV-1 amplicon vectors that encode individual or multiple viral structural proteins from a polycistronic transgene cassette. We further put particular emphasis on generating virus-like particles (VLPs) in vector-infected cells. Expression of viral genes is confirmed by Western blot and immune fluorescence analysis and generation of VLPs in vector-infected cells is demonstrated by electron microscopy. Furthermore, examples on how to analyze the immune response in a mouse model and possible challenge experiments are described.


Asunto(s)
Vectores Genéticos , Herpesvirus Humano 1 , Transducción Genética , Vacunas Virales , Animales , Chlorocebus aethiops , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/inmunología , Humanos , Ratones , Células Vero , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
3.
Oncotarget ; 8(27): 44533-44549, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28562350

RESUMEN

U94, the latency gene of human herpesvirus 6, was found to inhibit migration, invasion and proliferation of vascular endothelial cells (ECs). Because of its potent anti-migratory activity on ECs, we tested the capability of U94 to interfere with the individual steps of the metastatic cascade. We examined the U94 biological activity on the human breast cancer cell line MDA-MB 231, as a model of highly aggressive cancer cell. Here we show that the expression of U94 delivered by an HSV-1-based amplicon promoted down-modulation of Src and downstream molecules linked to cell motility and proliferation. Indeed, U94 expression strongly inhibited cell migration, invasiveness and clonogenicity. We investigated the effects of U94 in a three-dimensional rotary cell-culture system and observed the ability of U94 to modify tumor cell morphology by inducing a partial mesenchymal-to-epithelial transition. In fact, despite U94 did not induce any expression of the epithelial marker E-cadherin, it down-modulated different mesenchymal markers as ß-catenin, Vimentin, TWIST, Snail1, and MMP2. In vivo data on the tumorigenicity of MDA-MB 231 displayed the capability of U94 to control tumor growth, invasiveness and metastasis, as well as tumor-driven angiogenesis. The antitumor U94 activity was also confirmed on the human cervical cancer cell line HeLa. The ability of U94 to inhibit cell growth, invasion and metastasis opens the way to a promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Genes src , Herpesvirus Humano 6/fisiología , Proteínas Virales/genética , Animales , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Xenoinjertos , Humanos , Ratones , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Transducción de Señal , Transfección , Microambiente Tumoral/genética , Proteínas Virales/metabolismo
4.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331098

RESUMEN

There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant.IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/aislamiento & purificación , Glicoproteínas/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Virus Vaccinia/genética , Virión/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Virus del Ébola/genética , Ebolavirus/genética , Ebolavirus/inmunología , Ebolavirus/fisiología , Glicoproteínas/genética , Humanos , Inmunoglobulina G/sangre , Ratones , Nucleoproteínas/genética , Nucleoproteínas/inmunología , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Virión/fisiología
5.
Int J Mol Sci ; 18(2)2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212334

RESUMEN

Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vectores Genéticos/genética , Herpesvirus Humano 1/genética , Leche/inmunología , Vacunas contra Rotavirus/genética , Vacunas contra Rotavirus/inmunología , Rotavirus/inmunología , Vacunación , Animales , Anticuerpos Antivirales/sangre , Especificidad de Anticuerpos , Línea Celular Tumoral , Chlorocebus aethiops , Codón , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Embarazo , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/administración & dosificación , Transducción Genética , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Células Vero , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología
6.
Virology ; 454-455: 67-77, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24725933

RESUMEN

The herpes simplex virus type 1 (HSV-1) tegument proteins pUL36 (VP1/2) and pUL37 are essential for viral egress. We previously defined a minimal domain in HSV-1 pUL36, residues 548-572, as important for binding pUL37. Here, we investigated the role of this region in binding to pUL37 and facilitating viral replication. We deleted residues 548-572 in frame in a virus containing a mRFP tag at the N-terminus of the capsid protein VP26 and an eGFP tag at the C-terminus of pUL37 (HSV-1pUL36∆548-572). This mutant virus was unable to generate plaques in Vero cells, indicating that deletion of this region of pUL36 blocks viral replication. Imaging of HSV-1pUL36∆548-572-infected Vero cells, in comparison to parental and resucant, revealed a block in secondary envelopment of cytoplasmic capsids. In addition, immunoblot analysis suggested that failure to bind pUL37 affected the stability of pUL36. This study provides further insight into the role of this essential interaction.


Asunto(s)
Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Liberación del Virus , Animales , Chlorocebus aethiops , Análisis Mutacional de ADN , Células Vero , Ensayo de Placa Viral
7.
Methods Mol Biol ; 1144: 99-115, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24671679

RESUMEN

HSV-1 amplicon vectors have been used as platforms for the generation of genetic vaccines against both DNA and RNA viruses. Mice vaccinated with such vectors encoding structural proteins from both foot-and-mouth disease virus and rotavirus were partially protected from challenge with wild-type virus (D'Antuono et al. Vaccine 28: 7363-7372, 2010; Laimbacher et al. Mol Ther 20: 1810-1820, 2012), indicating that HSV-1 amplicon vectors are attractive tools for the development of complex and safe genetic vaccines. This chapter describes the use of HSV-1 amplicon vectors that encode individual or multiple viral structural proteins from a polycistronic transgene cassette in mammalian cells. More precisely, amplicon vectors that encode multiple structural viral proteins support the in situ production of viruslike particles (VLPs) in vector-infected cells. The expression of the viral genes is confirmed by Western blot and immune fluorescence analysis, and the generation of VLPs in vector-infected cells is demonstrated by electron microscopy.


Asunto(s)
Herpesvirus Humano 1/genética , Biología Molecular/métodos , Rotavirus/inmunología , Vacunas Virales/genética , Animales , Chlorocebus aethiops , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/terapia , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/inmunología , Herpesvirus Humano 1/inmunología , Humanos , Ratones , Rotavirus/genética , Rotavirus/patogenicidad , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/terapia , Células Vero , Proteínas Estructurales Virales/antagonistas & inhibidores , Proteínas Estructurales Virales/inmunología , Vacunas Virales/uso terapéutico
8.
J Virol ; 84(8): 3808-24, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20106923

RESUMEN

Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Dependovirus/fisiología , Herpesvirus Humano 1/fisiología , Transactivadores/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Animales , Apoptosis , Chlorocebus aethiops , Daño del ADN , ADN Viral/metabolismo , Dependovirus/crecimiento & desarrollo , Herpesvirus Humano 1/crecimiento & desarrollo , Fosforilación , Eliminación de Secuencia , Células Vero
9.
J Virol ; 81(9): 4732-43, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17314170

RESUMEN

We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.


Asunto(s)
Replicación del ADN/fisiología , Dependovirus/fisiología , Herpesvirus Humano 1/fisiología , Replicación Viral , Animales , Western Blotting , Chlorocebus aethiops , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Células Vero , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA