Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 585(7825): 447-452, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908313

RESUMEN

Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinase 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find that the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers.


Asunto(s)
Neoplasias de la Mama/genética , Centrosoma/metabolismo , Centrosoma/patología , Cromosomas Humanos Par 17/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Femenino , Fase G2 , Inestabilidad Genómica , Humanos , Mitosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
2.
Trends Cell Biol ; 27(5): 314-321, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28188027

RESUMEN

Cells have evolved certain precautions to preserve their genomic content during mitosis and avoid potentially oncogenic errors. Besides the well-established DNA damage checkpoint and spindle assembly checkpoint (SAC), recent observations have identified an additional mitotic failsafe referred to as the mitotic surveillance pathway. This pathway triggers a cell cycle arrest to block the growth of potentially unfit daughter cells and is activated by both prolonged mitosis and centrosome loss. Recent genome-wide screens surprisingly revealed that 53BP1 and USP28 act upstream of p53 to mediate signaling through the mitotic surveillance pathway. Here we review advances in our understanding of this failsafe and discuss how 53BP1 and USP28 adopt noncanonical roles to function in this pathway.


Asunto(s)
Mitosis , Animales , Puntos de Control del Ciclo Celular , Centrosoma/metabolismo , Humanos , Modelos Biológicos , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
3.
J Cell Biol ; 214(2): 143-53, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27432896

RESUMEN

Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.


Asunto(s)
Centrosoma/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Mitosis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Daño del ADN , Técnicas de Inactivación de Genes , Humanos , Metafase , Estabilidad Proteica
4.
J Cell Biol ; 210(1): 63-77, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26150389

RESUMEN

Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure.


Asunto(s)
Centriolos/genética , Inestabilidad Genómica , Proteína p53 Supresora de Tumor/fisiología , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Centriolos/fisiología , Segregación Cromosómica , Humanos , Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/fisiología , Transporte de Proteínas
5.
J Cell Biol ; 209(6): 863-78, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26101219

RESUMEN

Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle-regulated accumulation of STIL.


Asunto(s)
Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Anticuerpos/inmunología , Sitios de Unión/genética , Sitios de Unión/inmunología , Puntos de Control del Ciclo Celular , División Celular , Línea Celular , Activación Enzimática , Células HEK293 , Humanos , Indazoles/farmacología , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Edición de ARN , Interferencia de ARN , ARN Interferente Pequeño
6.
PLoS Biol ; 8(10): e1000509, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20967238

RESUMEN

Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites.


Asunto(s)
Genoma , Células Germinativas/fisiología , Hormonas Peptídicas/genética , Planarias , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Femenino , Células Germinativas/citología , Humanos , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Hormonas Peptídicas/metabolismo , Planarias/anatomía & histología , Planarias/genética , Planarias/crecimiento & desarrollo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Interferencia de ARN , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA