Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Transplant ; 20(4): 535-42, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21054949

RESUMEN

Fibroblasts isolated from skin and from anterior cruciate ligament (ACL) secrete type I and type III collagens in vivo and in vitro. However, it is much easier and practical to obtain a small skin biopsy than an ACL sample to isolate fibroblasts for tissue engineering applications. Various tissue engineering strategies have been proposed for torn ACL replacement. We report here the results of the implantation of bioengineered ACLs (bACLs), reconstructed in vitro using a type I collagen scaffold, anchored with two porous bone plugs to allow bone-ligament-bone surgical engraftment. The bACLs were seeded with autologous living dermal fibroblasts, and grafted for 6 months in goat knee joints. Histological and ultrastructural observations ex vivo demonstrated a highly organized ligamentous structure, rich in type I collagen fibers and cells. Grafts' vascularization and innervation were observed in all bACLs that were entirely reconstructed in vitro. Organized Sharpey's fibers and fibrocartilage, including chondrocytes, were present at the osseous insertion sites of the grafts. They showed remodeling and matrix synthesis postimplantation. Our tissue engineering approach may eventually provide a new solution to replace torn ACL in humans.


Asunto(s)
Ligamento Cruzado Anterior/citología , Ligamento Cruzado Anterior/trasplante , Fibroblastos/citología , Ingeniería de Tejidos/métodos , Animales , Bovinos , Células Cultivadas , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno Tipo III/química , Colágeno Tipo III/metabolismo , Femenino , Cabras , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA