Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Waste Manag ; 176: 1-10, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246072

RESUMEN

With continuous advancements in the zero-waste strategy in China, transportation of fresh municipal solid waste to landfills has ceased in most first-tier cities. Consequently, the production of landfill gas has sharply declined because the supply of organic matter has decreased, rendering power generation facilities idle. However, by incorporating liquefied kitchen and food waste (LKFW), sustainable methane production can be achieved while consuming organic wastewater. In this study, LKFW and water (as a control group) were periodically injected into high and low organic wastes, respectively. The biochemical characteristics of the resulting gas and leachate were analyzed. LKFW used in this research generated 19.5-37.6 L of methane per liter in the post-methane production phase, highlighting the effectiveness of LKFW injection in enhancing the methane-producing capacity of the system. The release of H2S was prominent during both the rapid and post-methane production phases, whereas that of NH3 was prominent in the post-methane production phase. As injection continued, the concentrations of chemical oxygen demand, 5-d biological oxygen demand, total organic carbon, ammonia nitrogen, total nitrogen, and oil in the output leachate decreased and eventually reached levels comparable to those in the water injection cases. After nine rounds of injections, the biologically degradable matter of the two LKFW-injected wastes decreased by 8.2 % and 15.1 %, respectively. This study sheds light on determining the organic load, controlling odor, and assessing the biochemical characteristics of leachate during LKFW injection.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado , Alimentos , Reactores Biológicos , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Metano/análisis , Agua , Nitrógeno
2.
Sci Total Environ ; 718: 137195, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32087578

RESUMEN

Loess is widely distributed in Northwest China where the rainy season coincides with the warm and vegetation growth period. The use of loess as a capillary barrier cover (CBC) material is promising. However, how the loess/gravel CBC perform as a capillary barrier and landfill gas emissions controller remains elusive. In this study, the performance of a designed CBC comprised 1.3 m-thick compacted loess underlain by 0.3 m-thick gravel in extremely wet and dry years of Xi'an city from 1950 to 2000 was analyzed using numerical modeling. An instrumented CBC test section comprised 0.9 m-thick compacted loess underlain by 0.3 m-thick gravel was constructed to show the hydraulic responses in real conditions from January 2015 to January 2017. The numerical results indicated that the designed CBC performed well as a capillary barrier as no percolation occurred during the extremely wet periods. Despite adopting a CBC of 0.4 m thinner than the designed one, the test section produced only 16.16 mm percolation during the two-year monitoring period, and that can meet the recommended limit of 30 mm/yr. The effect of the capillary break on increasing the water storage within the CBC was observed at the test section in fall. The increased water storage can significantly decrease the gas permeability, and thus improve the performance of the CBC as a LFG emissions controller. Furthermore, the LFG emissions can be controlled to meet the limit set by the Australian guideline by decreasing the bottom gas pressure and artificial watering. Finally, a procedure was proposed to enhance the performance of CBCs.

3.
Waste Manag Res ; 38(5): 588-593, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31856695

RESUMEN

A newly developed static chamber method with a laser methane detector and a biogas analyser was proposed to measure the landfill gas emissions and methane (CH4) oxidation rates in landfill covers. The method relied on a laser methane detector for measuring CH4 concentration, avoiding gas samplings during test and hence the potential interference of gas compositions inside the chamber. All the measurements could be obtained on site. The method was applied to determine the landfill gas emissions and CH4 oxidation rates in a full-scale loess gravel capillary barrier cover constructed in landfill. Both laboratory calibration and in-situ tests demonstrated that fast (i.e. <20 min) and accurate measurements could be obtained by the proposed method. The method is capable of capturing the significant spatial and temporal variations of the landfill gas emissions and CH4 oxidation rates in landfill site.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Biocombustibles , Metano , Oxidación-Reducción , Instalaciones de Eliminación de Residuos
4.
Environ Sci Pollut Res Int ; 26(20): 20325-20343, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093916

RESUMEN

In this study, integrate electrical resistivity tomography (ERT) tests were carried out in a large-scale (5.0 × 4.0 × 7.5 m) MSW landfill cell to investigate the possibility of detecting perched leachate mounds, leachate level, and gas accumulation zones at wet landfills. The resistivity of both bulk waste and waste components at different moisture states were measured and the three-phase volumetric relationships of the waste pile were analyzed to better interpret the ERT test results in the large-scale cell. The following observations were given: (1) The relationship between resistivity and volumetric moisture content (VMC) of waste sample can be reasonably fitted by Archie's law. The resistivity of waste components at a saturated state was all lower than 21 Ω m. (2) A significant amount of void gas was entrapped in the underwater waste, being 30.4-34.8% of the whole waste pile in volume. (3) Low-resistivity zones (< 5.0 Ω m) were observed in the waste pile being fully drained under a gravity condition, which was believed to be related to a perched leachate. (4) The average VMC values of the waste layer below and above the leachate level were in the ranges of 46.5-53.1% and 28.1-41.3%, respectively. (5) Irregular variations of high-resistivity zones (> 40 Ω m) observed in the underwater waste were associated with the accumulation and dissipation of gas pressure. It was found that the "gas-breaking value" in the gas accumulation zone was up to 10.5 kPa greater than the pore liquid pressure in the stable methanogenesis stage. These findings shone a light on the possibility of using the ERT method as an efficient tool for mapping the gas/leachate distribution and improving operations at wet landfills.


Asunto(s)
Gases/análisis , Tomografía/métodos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Electricidad , Eliminación de Residuos/métodos
5.
Waste Manag ; 68: 307-318, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28668602

RESUMEN

The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG.


Asunto(s)
Eliminación de Residuos , Instalaciones de Eliminación de Residuos , Reactores Biológicos , China , Hidrología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA