Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Biol Sci ; 20(8): 3156-3172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904009

RESUMEN

Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Neoplasias Pancreáticas , Humanos , Ferroptosis/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Línea Celular Tumoral , Animales , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Ratones , Proteostasis , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones Desnudos
2.
Kaohsiung J Med Sci ; 40(3): 231-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38180297

RESUMEN

Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/genética , Glucólisis/genética , Proliferación Celular/genética , Glucosa , MicroARNs/genética , Línea Celular Tumoral
3.
Ann Med ; 55(2): 2280708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37967237

RESUMEN

BACKGROUND: The rapid adoption of next-generation sequencing in clinical oncology has enabled detection of molecular biomarkers which are shared between multiple tumour types. Intra-tumour heterogeneity is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the tumour-related copy number variants (CNVs), as key regulators of cancer origination, development, and progression, across various types of cancers are poorly understood. METHODS: We performed pan-cancer CNV analysis of cancer-related genes in 15 types of cancers including 1438 cancerous patients by next-generation sequencing using a commercially available pan-cancer panel (Onco PanScan™). Downstream bioinformatics analysis was performed in order to detect CNVs, cluster analysis of the found CNVs, and comparison of the frequency of gained CNVs between different types of cancers. LASSO analysis was used for identification of the most important CNVs. RESULTS: We also identified 523 CNVs among which 16 CNVs were common while 22 CNVs were caner-specific CNVs. Meanwhile, FAM58A was most commonly found in all studied cancers in this study and significant differences were found in FAM58A between female and male patients (p = .001). Common CNVs, such as FOXA1, NFKBIA, HEY1, MECOM, CHD7, AGO2, were mutated in 6.79%, 8.45%, 7.51%, 6.43%, 7.59%, 8.16% of tumours, while most of these mutations have proven roles in positive regulation of transcription from RNA polymerase II promoter. 11 features including sex, DIS3, EPHB1, ERBB2, FLT1, HCK, KEAP1, MYD88, PARP3, TBX3, and TOP2A were found as the key features for classification of cancers using CNVs. CONCLUSION: The 16 common CNVs between cancers can be used to identify the target of pan-cancer drug design and targeted therapies. Additionally, 22 caner-specific CNVs can be used as unique diagnostic markers for each cancer type.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Masculino , Femenino , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Neoplasias/genética , Biología Computacional
4.
J Gastrointest Oncol ; 13(1): 231-245, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35284121

RESUMEN

Background: Colorectal cancer (CRC) is the 3rd most common cancer and the 2nd leading cause of cancer-related death. Numerous studies have found that aberrations in cellular molecules play an important role in the development of tumors. Studying and determining the interactions between these molecules can contribute to the diagnosis, treatment, and prognosis of tumors. Methods: The GSE151021, GSE156720, and GSE156719 data sets were analyzed to screen the differentially expressed messenger RNAs (DEmRNAs), long non-coding RNAs (DElncRNAs), and microRNAs (DEmiRNAs) in CRC. Database for Annotation, Visualization and Integrated Discovery (DAVID) and the Search Tool for the Retrieval of Interacting Genes/Proteins software were used to examine gene enrichment and the hub genes. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and UALCAN was used to verify the expression of the hub genes. To analyze the overall survival (OS) of the hub genes, Kaplan-Meier plotter (KM plotter) was performed. Finally, the miRCancer database, TargetScan, and GSE156719 were used to identify the targets of the identified miRNAs. To predict the lncRNA-miRNA interactions, we used DIANA-LncBase v2 and GSE156720. Finally, the visualization protein­protein interaction (PPI), competitive endogenous RNA (ceRNA) network was constructed using Cytoscape v3.1. Results: By analyzing GSE151021 and GSE156720, 23 upregulated mRNAs and 10 downregulated mRNAs were identified as sharing the differentially expressed genes (DEGs) between CRC and adjacent tissues. Furthermore, nucleolar protein 14 (NOP14), the sonic hedgehog (SHH) signaling molecule, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), the BCL2 apoptosis regulator (BCL2), and zinc finger E-box binding homeobox 2 (ZEB2) were considered hub genes. The constructed lncRNA-miRNA-mRNA network revealed 7 intersecting miRNAs (4 upregulated and 3 downregulated), 79 lncRNAs (40 upregulated and 39 downregulated), and 5 mRNAs (3 upregulated and 2 downregulated). Finally, we determined that the dysregulation of lncRNAs, such as HCG16, CASC9, SNHG16, HAND2-AS1, and NR2F1-AS1, secluded altered the expression of several miRNAs, such as hsa-miR-193a-5p, hsa-miR-485-5p, hsa-miR-17-5p, and hsa-miR-92a-3p, and affected the occurrence and development of CRC. Conclusions: We identified a series of DElncRNAs, DEmRNAs, and DEmiRNAs in CRC that might be considered potential biomarkers in understanding the complex molecular pathways leading to CRC development.

5.
Front Genet ; 11: 741, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765589

RESUMEN

Familial chylomicronemia syndrome (FCS) is a rare monogenic autosomal recessive disease caused by loss-of-function mutations in genes involved in chylomicron breakdown through hydrolysis of triglycerides into free fatty acids. Patients are often diagnosed in early childhood with extremely high triglyceride levels and symptoms including abdominal pain, eruptive cutaneous xanthomata, hepatosplenomegaly, and significant cognitive, psychological, and social impairment. The most serious medical condition suffered by FCS patients is recurrent acute pancreatitis. Lipoprotein lipase (LPL) gene mutation accounts for majority of the known pathogenic mutations. Early diagnosis and strict low-fat diet are critical for successful management of the triglyceride concentration to lower the risk of pancreatitis. The true prevalence of FCS in China is unknown and here we report a Chinese female preterm neonate presented with an extremely high triglyceride level of 22.11 mmol/L on day 13 after birth. Clinical and laboratory workup including whole-exome sequencing revealed two novel compound heterozygous LPL mutations (c.406G > C and c.829G > C) that are co-segregated with her non-consanguineous parents, consistent with autosomal recessive inheritance. A diagnosis of FCS based on clinical, biochemical, and genetic ground was made to guide her management.

6.
Gene ; 533(2): 547-53, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24161253

RESUMEN

Type II citrullinaemia, also known as citrin deficiency, is an autosomal recessive metabolic disorder, which is caused by pathogenic mutations in the SLC25A13 gene on chromosome 7q21.3. One of the clinical manifestations of type II citrullinaemia is neonatal intrahepatic cholestatic hepatitis caused by citrin deficiency (NICCD, OMIM# 605814). In this study, a 5-month-old female Chinese neonate diagnosed with type II citrullinaemia was examined. The diagnosis was based on biochemical and clinical findings, including organic acid profiling using a gas chromatography mass spectrometry (GC/MS), and the patient's parents were unaffected. Approximately 14 kb of the exon sequences of the SLC25A13 and two relative genes (ASS1 and FAH) from the proband and 100 case-unrelated controls were captured by array-based capture method followed by high-throughput next-generation sequencing. Two single-nucleotide mutations were detected in the proband, including the previous reported c.1177+1G>A mutation and a novel c.754 G>A mutation in the SLC25A13 gene. Sanger sequence results showed that the patient was a compound heterozygote for the two mutations. The novel mutation (c.754 G>A), which is predicted to affect the normal structure and function of citrin, is a candidate pathogenic mutation. Target sequence capture combined with high-throughput next-generation sequencing technologies is proven to be an effective method for molecular genetic testing of type II citrullinaemia.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Citrulinemia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación Missense , Transportadores de Anión Orgánico/deficiencia , Secuencia de Aminoácidos , Pueblo Asiatico/genética , Secuencia de Bases , Estudios de Casos y Controles , Análisis Mutacional de ADN/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Datos de Secuencia Molecular
7.
Clin Chim Acta ; 423: 62-5, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23726269

RESUMEN

BACKGROUND: Hypochondroplasia (HCH) is a mild, autosomal dominant human skeletal dysplasias characterized by short extremities, short stature and lumbar lordosis. There are three other kinds of dwarfism (Pseudoachondroplasia, Achondroplasia and Thanatophoric Syndromes) with similar clinical features, which makes it difficult to give a precise diagnosis. Molecular genetic analysis of related genes should be employed. METHODS: In this study, we reported a Chinese family diagnosed as a type of skeletal dysplasia based on clinical and radiologic findings. To make an accurate diagnosis quickly and economically, we performed microarray-based next-generation sequencing (NGS) to detect the variants in the disease-related genes (FGFR3 and COMP). RESULTS: The mother presents short limbed stature, short iliac bones, short femoral necks, short stubby tibia and mildly increased fibular length and genu varum. Her fetus demonstrated abnormally short femur at 23 and 28week's gestation by ultrasound scan, and was highly suspected with dwarfism. Eventually, a novel missense mutation (c.1024G>T) in FGFR3 was identified by next-generation sequencing. The substitution is found in both the mother and her fetus. The mutation was further confirmed by Sanger sequencing. CONCLUSIONS: This is the first report of missense mutation identified in the IgIII domain of the FGFR3 gene using NGS. Our results extended the mutational spectrum of FGFR3 and proved that applications of NGS and bioinformatics are effective methods for skeletal dysplasia diagnosis in clinical practices.


Asunto(s)
Huesos/anomalías , Enanismo/genética , Deformidades Congénitas de las Extremidades/genética , Lordosis/genética , Mutación Missense/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Análisis de Secuencia de ADN , Adulto , Secuencia de Aminoácidos , China , Enanismo/diagnóstico , Femenino , Feto , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Lordosis/diagnóstico , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA