Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39013578

RESUMEN

Cancer development and progression are generally associated with gene dysregulation, often resulting from changes in the transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network, as well as an extensive promoter clone resource for future studies. Highly connected TFs bind to promoters of genes associated with either good or poor cancer prognosis, suggesting that strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene-targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activators or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF ESR1 in DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study broadens our knowledge of the TFs involved in cancer gene regulation and provides a valuable resource for future studies and therapeutics.


Asunto(s)
ADN , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias , Unión Proteica , Factores de Transcripción , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ADN/metabolismo , ADN/genética , Regiones Promotoras Genéticas/genética , Oncogenes/genética , Pronóstico , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Biología Computacional/métodos
2.
Nat Biomed Eng ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710838

RESUMEN

Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

3.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38617209

RESUMEN

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

4.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352498

RESUMEN

Cancer development and progression are generally associated with dysregulation of gene expression, often resulting from changes in transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network as well as an extensive promoter clone resource for future studies. Most highly connected TFs do not show a preference for binding to promoters of genes associated with either good or poor cancer prognosis, suggesting that emerging strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activator or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF estrogen receptor ɑ (ESR1) on DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study not only broadens our knowledge of TFs involved in the cancer gene regulatory network but also provides a valuable resource for future studies, laying a foundation for potential therapeutic strategies targeting TFs in cancer.

5.
Nat Commun ; 14(1): 6570, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853017

RESUMEN

Cooperativity and antagonism between transcription factors (TFs) can drastically modify their binding to regulatory DNA elements. While mapping these relationships between TFs is important for understanding their context-specific functions, existing approaches either rely on DNA binding motif predictions, interrogate one TF at a time, or study individual TFs in parallel. Here, we introduce paired yeast one-hybrid (pY1H) assays to detect cooperativity and antagonism across hundreds of TF-pairs at DNA regions of interest. We provide evidence that a wide variety of TFs are subject to modulation by other TFs in a DNA region-specific manner. We also demonstrate that TF-TF relationships are often affected by alternative isoform usage and identify cooperativity and antagonism between human TFs and viral proteins from human papillomaviruses, Epstein-Barr virus, and other viruses. Altogether, pY1H assays provide a broadly applicable framework to study how different functional relationships affect protein occupancy at regulatory DNA regions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , ADN/metabolismo , Sitios de Unión
6.
Nat Commun ; 14(1): 4703, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543621

RESUMEN

TGFß signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFß signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFß and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFß/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFß therapy efficacy. Our data suggest that TGFß works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Factor de Crecimiento Transformador beta , Femenino , Animales , Ratones , Diferenciación Celular , Linfocitos T CD8-positivos/inmunología , Células Madre , Antígeno B7-H1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Interferón gamma/inmunología , Agotamiento de Células T , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos BALB C , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , RNA-Seq
7.
Stem Cells ; 41(6): 617-627, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37085269

RESUMEN

Achilles tendon rupture is a common sports-related injury. Even with advanced clinical treatments, many patients suffer from long-term pain and functional deficits. These unsatisfactory outcomes result primarily from an imbalanced injury response with excessive inflammation and inadequate tendon regeneration. Prior studies showed that extracellular vesicles from inflammation-primed adipose-derived stem cells (iEVs) can attenuate early tendon inflammatory response to injury. It remains to be determined if iEVs can both reduce inflammation and promote regeneration in the later phases of tendon healing and the underlying mechanism. Therefore, this study investigated the mechanistic roles of iEVs in regulating tendon injury response using a mouse Achilles tendon injury and repair model in vivo and iEV-macrophage and iEV-tendon cell coculture models in vitro. Results showed that iEVs promoted tendon anti-inflammatory gene expression and reduced mononuclear cell accumulation to the injury site in the remodeling phase of healing. iEVs also increased collagen deposition in the injury center and promoted tendon structural recovery. Accordingly, mice treated with iEVs showed less peritendinous scar formation, much lower incidence of postoperative tendon gap or rupture, and faster functional recovery compared to untreated mice. Further in vitro studies revealed that iEVs both inhibited macrophage M1 polarization and increased tendon cell proliferation and collagen production. The iEV effects were partially mediated by miR-147-3p, which blocked the toll-like receptor 4/NF-κB signaling pathway that activated the M1 phenotype of macrophages. The combined results demonstrate that iEVs are a promising therapeutic agent that can enhance tendon repair by attenuating inflammation and promoting intrinsic healing.


Asunto(s)
Tendón Calcáneo , Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tendones , Humanos , Tendón Calcáneo/lesiones , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas/fisiología , Traumatismos de los Tendones/cirugía , Vesículas Extracelulares/metabolismo , Colágeno , Inflamación
8.
J Orthop Res ; 41(2): 278-289, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35488732

RESUMEN

Enriched in glycolytic enzymes, paucicellular and hypovascular intrasynovial flexor tendons fail to mount an effective healing response after injury and repair. In contrast, well-vascularized extrasynovial flexor tendons possess high levels of oxidative phosphorylation (OXPHOS) enzymes and have a markedly improved healing capacity. This study was designed to compare the metabolic profiles of the two types of tendons and to evaluate the impact of metabolic reprogramming on early intrasynovial tendon healing in a clinically relevant canine model. Results showed that healthy intrasynovial tendons expressed higher levels of PDK1 and GAPDH and lower levels of SCX and IGF1 than did extrasynovial tendons. PDK1 encodes a subtype of pyruvate dehydrogenase kinase (PDK) that inhibits OXPHOS. Consistently, ATP production via glycolysis was favored in intrasynovial tendon cells whereas OXPHOS was the preferred pathway in extrasynovial tendon cells. Inhibition of glycolysis in vitro increased SCX expression in intrasynovial tendon cells. Therefore, dichloroacetate (DCA), a PDK1 inhibitor, was used in vivo to shift intrasynovial tendon ATP production from glycolysis to OXPHOS. Oral DCA administration reduced serum lactate concentration and increased acetyl-CoA content in repaired intrasynovial tendons and led to reduced TLR4 and IL1B and increased IGF1, SCX, and TGFB3 expressions in treated intrasynovial tendons compared to controls. Immunohistochemistry staining with anti-Ki67 and anti-CD31 antibodies revealed marked increases in cellularity and neovascularization in treated intrasynovial tendons. Clinical significance: The findings of this experiment indicate that improved gene expression and histological outcomes can be achieved by regulating glucose metabolism in the early stages following intrasynovial tendon repair.


Asunto(s)
Procedimientos de Cirugía Plástica , Tendones , Animales , Perros , Adenosina Trifosfato/metabolismo , Procedimientos de Cirugía Plástica/veterinaria , Tendones/fisiología , Tendones/cirugía
9.
Adv Mater ; 33(31): e2100628, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34118167

RESUMEN

The success of immunotherapy with immune checkpoint inhibitors (ICIs) in a subset of individuals has been very exciting. However, in many cancers, responses to current ICIs are modest and are seen only in a small subsets of patients. Herein, a widely applicable approach that increases the benefit of ICIs is reported. Intratumoral administration of augmenting immune response and inhibiting suppressive environment of tumors-AIRISE-02 nanotherapeutic that co-delivers CpG and STAT3 siRNA-results in not only regression of the injected tumor, but also tumors at distant sites in multiple tumor model systems. In particular, three doses of AIRISE-02 in combination with systemic ICIs completely cure both treated and untreated aggressive melanoma tumors in 63% of mice, while ICIs alone do not cure any mice. A long-term memory immune effect is also reported. AIRISE-02 is effective in breast and colon tumor models as well. Lastly, AIRISE-02 is well tolerated in mice and nonhuman primates. This approach combines multiple therapeutic agents into a single nanoconstruct to create whole-body immune responses across multiple cancer types. Being a local therapeutic, AIRISE-02 circumvents regulatory challenges of systemic nanoparticle delivery, facilitating rapid translation to the clinic. AIRISE-02 is under investigational new drug (IND)-enabling studies, and clinical trials will soon follow.


Asunto(s)
Inmunoterapia , Nanopartículas , ARN Interferente Pequeño , Animales , Ratones , Vacunación
10.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663703

RESUMEN

Leukocyte egress from peripheral tissues to draining lymph nodes is not only critical for immune surveillance and initiation but also contributes to the resolution of peripheral tissue responses. While a variety of methods are used to quantify leukocyte egress from non-lymphoid, peripheral tissues, the cellular and molecular mechanisms that govern context-dependent egress remain poorly understood. Here, we describe the use of in situ photoconversion for quantitative analysis of leukocyte egress from murine skin and tumors. Photoconversion allows for the direct labeling of leukocytes resident within cutaneous tissue. Though skin exposure to violet light induces local inflammatory responses characterized by leukocyte infiltrates and vascular leakiness, in a head-to-head comparison with transdermal application of fluorescent tracers, photoconversion specifically labeled migratory dendritic cell populations and simultaneously enabled the quantification of myeloid and lymphoid egress from cutaneous microenvironments and tumors. The mechanisms of leukocyte egress remain a missing component in our understanding of intratumoral leukocyte complexity, and thus the application of the tools described herein will provide unique insight into the dynamics of tumor immune microenvironments both at steady state and in response to therapy.


Asunto(s)
Leucocitos/metabolismo , Vasos Linfáticos/metabolismo , Neoplasias/patología , Piel/inmunología , Animales , Ganglios Linfáticos/inmunología , Ratones
11.
Front Immunol ; 9: 2662, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498499

RESUMEN

In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Matriz Extracelular/inmunología , Humanos , Memoria Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología
12.
J Exp Med ; 215(12): 3057-3074, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30381467

RESUMEN

Mechanisms of immune suppression in peripheral tissues counteract protective immunity to prevent immunopathology and are coopted by tumors for immune evasion. While lymphatic vessels facilitate T cell priming, they also exert immune suppressive effects in lymph nodes at steady-state. Therefore, we hypothesized that peripheral lymphatic vessels acquire suppressive mechanisms to limit local effector CD8+ T cell accumulation in murine skin. We demonstrate that nonhematopoietic PD-L1 is largely expressed by lymphatic and blood endothelial cells and limits CD8+ T cell accumulation in tumor microenvironments. IFNγ produced by tissue-infiltrating, antigen-specific CD8+ T cells, which are in close proximity to tumor-associated lymphatic vessels, is sufficient to induce lymphatic vessel PD-L1 expression. Disruption of IFNγ-dependent crosstalk through lymphatic-specific loss of IFNγR boosts T cell accumulation in infected and malignant skin leading to increased viral pathology and tumor control, respectively. Consequently, we identify IFNγR as an immunological switch in lymphatic vessels that balances protective immunity and immunopathology leading to adaptive immune resistance in melanoma.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Dermis/inmunología , Interferón gamma/inmunología , Vasos Linfáticos/inmunología , Melanoma/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias Cutáneas/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Dermis/patología , Interferón gamma/genética , Vasos Linfáticos/patología , Melanoma/genética , Melanoma/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Neoplasias Cutáneas/patología , Receptor de Interferón gamma
13.
Opt Express ; 26(12): 15693-15704, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114827

RESUMEN

Optically pumped molecular gas amplifiers having a gain medium contained in a hollow-core optical fiber are investigated with numerical modeling to understand the primary physical processes that affect amplifier output and efficiency. A comparison of computational results with experimental measurements of incident pump, absorbed pump, and emitted mid-IR from a pulsed, acetylene-filled, hollow-core fiber amplifier [ Opt. Exp.25, 13351 (2017)] is used to explore the effects of various physical processes on pulsed amplifier operation. Single frequency, one-dimensional, time-dependent models are shown to align with experimentally measured lasing thresholds and ratios of absorbed pump to emitted laser energy but significantly over predict the amount of incident pump energy that is absorbed. A two-dimensional, time-dependent model that assumes Gaussian spectral and radial intensity profiles for the pump is developed and shows an improved ability to capture pump absorption. Results indicate that 1D, time-dependent models have utility in guiding experiments but the significant influence of the pump and laser propagation modes and the pump spectral characteristics on efficiency, threshold, and signal output must be explicitly included in high-fidelity high-power modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA