Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38648865

RESUMEN

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Homeostasis , Hierro , Mitocondrias , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Homeostasis/fisiología , Homeostasis/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular Tumoral , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos
3.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095531

RESUMEN

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Inhibidores mTOR , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Translocación Genética , Fosfatidilinositol 3-Quinasa , Glicoproteínas de Membrana/genética
4.
EMBO Mol Med ; 15(5): e16877, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987696

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.


Asunto(s)
Síndrome de Birt-Hogg-Dubé , Quistes , Neoplasias Renales , Humanos , Ratones , Animales , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción , Carcinogénesis/genética
5.
J Med Genet ; 59(1): 18-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067352

RESUMEN

Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumour susceptibility disease caused by germline pathogenic variation of the VHL tumour suppressor gene. Affected individuals are at risk of developing multiple malignant and benign tumours in a number of organs.In this report, a male patient in his 20s who presented to the Urologic Oncology Branch at the National Cancer Institute with a clinical diagnosis of VHL was found to have multiple cerebellar haemangioblastomas, bilateral epididymal cysts, multiple pancreatic cysts, and multiple, bilateral renal tumours and cysts. The patient had no family history of VHL and was negative for germline VHL mutation by standard genetic testing. Further genetic analysis demonstrated a germline balanced translocation between chromosomes 1 and 3, t(1;3)(p36.3;p25) with a breakpoint on chromosome 3 within the second intron of the VHL gene. This created a pathogenic germline alteration in VHL by a novel mechanism that was not detectable by standard genetic testing.Karyotype analysis is not commonly performed in existing genetic screening protocols for patients with VHL. Based on this case, protocols should be updated to include karyotype analysis in patients who are clinically diagnosed with VHL but demonstrate no detectable mutation by existing genetic testing.


Asunto(s)
Mutación de Línea Germinal , Translocación Genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Neoplasias Cerebelosas/etiología , Análisis Mutacional de ADN , Hemangioblastoma/etiología , Humanos , Neoplasias Renales/etiología , Masculino , Secuenciación del Exoma , Enfermedad de von Hippel-Lindau/complicaciones
6.
Genes Chromosomes Cancer ; 60(6): 434-446, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33527590

RESUMEN

Renal cell carcinoma (RCC) is not a single disease but is made up of several different histologically defined subtypes that are associated with distinct genetic alterations which require subtype specific management and treatment. Papillary renal cell carcinoma (pRCC) is the second most common subtype after conventional/clear cell RCC (ccRCC), representing ~20% of cases, and is subcategorized into type 1 and type 2 pRCC. It is important for preclinical studies to have cell lines that accurately represent each specific RCC subtype. This study characterizes seven cell lines derived from both primary and metastatic sites of type 1 pRCC, including the first cell line derived from a hereditary papillary renal carcinoma (HPRC)-associated tumor. Complete or partial gain of chromosome 7 was observed in all cell lines and other common gains of chromosomes 16, 17, or 20 were seen in several cell lines. Activating mutations of MET were present in three cell lines that all demonstrated increased MET phosphorylation in response to HGF and abrogation of MET phosphorylation in response to MET inhibitors. CDKN2A loss due to mutation or gene deletion, associated with poor outcomes in type 1 pRCC patients, was observed in all cell line models. Six cell lines formed tumor xenografts in athymic nude mice and thus provide in vivo models of type 1 pRCC. These type 1 pRCC cell lines provide a comprehensive representation of the genetic alterations associated with pRCC that will give insight into the biology of this disease and be ideal preclinical models for therapeutic studies.


Asunto(s)
Carcinoma de Células Renales/genética , Autenticación de Línea Celular/métodos , Neoplasias Renales/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Inestabilidad Cromosómica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Neoplasias Renales/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
7.
Sci Signal ; 14(664)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402335

RESUMEN

Understanding the mechanisms of the Warburg shift to aerobic glycolysis is critical to defining the metabolic basis of cancer. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an aggressive cancer characterized by biallelic inactivation of the gene encoding the Krebs cycle enzyme fumarate hydratase, an early shift to aerobic glycolysis, and rapid metastasis. We observed impairment of the mitochondrial respiratory chain in tumors from patients with HLRCC. Biochemical and transcriptomic analyses revealed that respiratory chain dysfunction in the tumors was due to loss of expression of mitochondrial DNA (mtDNA)-encoded subunits of respiratory chain complexes, caused by a marked decrease in mtDNA content and increased mtDNA mutations. We demonstrated that accumulation of fumarate in HLRCC tumors inactivated the core factors responsible for replication and proofreading of mtDNA, leading to loss of respiratory chain components, thereby promoting the shift to aerobic glycolysis and disease progression in this prototypic model of glucose-dependent human cancer.


Asunto(s)
Carcinoma de Células Renales/genética , Ciclo del Ácido Cítrico , Daño del ADN , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Síndromes Neoplásicos Hereditarios/enzimología , Neoplasias Cutáneas/enzimología , Neoplasias Uterinas/enzimología , Adulto , Anciano , Carcinoma de Células Renales/etiología , Carcinoma de Células Renales/metabolismo , Reparación del ADN , Replicación del ADN , Femenino , Fumarato Hidratasa/deficiencia , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/etiología , Neoplasias Renales/metabolismo , Leiomiomatosis/complicaciones , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Síndromes Neoplásicos Hereditarios/complicaciones , Neoplasias Cutáneas/complicaciones , Neoplasias Uterinas/complicaciones , Adulto Joven
8.
Urology ; 149: 89-97, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242557

RESUMEN

OBJECTIVES: To characterize the clinical presentation, genomic alterations, pathologic phenotype and clinical management of microphthalmia-associated transcription factor (MITF) familial renal cell carcinoma (RCC), caused by a member of the TFE3, TFEB, and MITF family of transcription factor genes. METHODS: The clinical presentation, family history, tumor histopathology, and surgical management were evaluated and reported herein. DNA sequencing was performed on blood DNA, tumor DNA and DNA extracted from adjacent normal kidney tissue. Copy number and gene expression analyses on tumor and normal tissues were performed by Real-Time Polymerase chain reaction. TCGA gene expression data were used for comparative analysis. Protein expression and subcellular localization were evaluated by immunohistochemistry. RESULTS: Germline genomic analysis identified the MITF p.E318K variant in a patient with bilateral, multifocal type 1 papillary RCC and a family history of RCC. All tumors displayed the MITF variant and were characterized by amplification of chromosomes 7 and 17, hallmarks of type 1 papillary RCC. We demonstrated that MITF p.E318K variant results in altered transcriptional activity and that downstream targets of MiT family members, such as GPNMB, are dysregulated in the tumors. CONCLUSION: Association of the pathogenic MITF variant with bilateral and multifocal type 1 papillary RCC in this family supports its role as a risk allele for the development of RCC and emphasizes the importance of screening for MITF variants irrelevant of the RCC histologic subtype. This study identifies potential biomarkers for the disease, such as GPNMB expression, that may facilitate the development of targeted therapies for patients affected with MITF-associated RCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Factor de Transcripción Asociado a Microftalmía/genética , Adulto , Carcinogénesis/genética , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Riñón/cirugía , Neoplasias Renales/diagnóstico , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Masculino , Glicoproteínas de Membrana/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Nefrectomía , Linaje , Tomografía Computarizada por Rayos X
9.
Cell Rep ; 30(6): 1823-1834.e5, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049013

RESUMEN

The tumor suppressor folliculin (FLCN) suppresses nuclear translocation of TFE3, a master transcription factor for lysosomal biogenesis, via regulation of amino-acid-sensing Rag GTPases. However, the importance of this lysosomal regulation in mammalian physiology remains unclear. Following hematopoietic-lineage-specific Flcn deletion in mice, we found expansion of vacuolated phagocytes that accumulate glycogen in their cytoplasm, phenotypes reminiscent of lysosomal storage disorder (LSD). We report that TFE3 acts in a feedback loop to transcriptionally activate FLCN expression, and FLCN loss disrupts this loop, augmenting TFE3 activity. Tfe3 deletion in Flcn knockout mice reduces the number of phagocytes and ameliorates LSD-like phenotypes. We further reveal that TFE3 stimulates glycogenesis by promoting the expression of glycogenesis genes, including Gys1 and Gyg, upon loss of Flcn. Taken together, we propose that the FLCN-TFE3 feedback loop acts as a rheostat to control lysosome activity and prevents excessive glycogenesis and LSD-like phagocyte activation.


Asunto(s)
Lisosomas/metabolismo , Fagocitos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados
10.
JAMA ; 323(4): 339-351, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31990315

RESUMEN

IMPORTANCE: Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. OBJECTIVE: To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. DESIGN, SETTING, AND PARTICIPANTS: Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. EXPOSURES: Measurement of islet autoantibodies. MAIN OUTCOMES AND MEASURES: The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; >20 indicates severe depression). RESULTS: Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P < .001). CONCLUSIONS AND RELEVANCE: Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies.


Asunto(s)
Autoanticuerpos/sangre , Diabetes Mellitus Tipo 1/epidemiología , Islotes Pancreáticos/inmunología , Tamizaje Masivo , Enfermedades Asintomáticas/epidemiología , Enfermedades Asintomáticas/psicología , Preescolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/psicología , Femenino , Estudios de Seguimiento , Alemania/epidemiología , Humanos , Masculino , Padres , Encuestas y Cuestionarios
11.
Sci Rep ; 9(1): 18409, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804603

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is characterized by germline mutations of the FH gene that encodes for the TCA cycle enzyme, fumarate hydratase. HLRCC patients are at risk for the development of an aggressive form of type 2 papillary renal cell carcinoma. By studying the mechanism of action of marizomib, a proteasome inhibitor able to cross the blood-brain barrier, we found that it modulates the metabolism of HLRCC cells. Marizomib decreased glycolysis in vitro and in vivo by downregulating p62 and c-Myc. C-Myc downregulation decreased the expression of lactate dehydrogenase A, the enzyme catalyzing the conversion of pyruvate to lactate. In addition, proteasomal inhibition lowered the expression of the glutaminases GLS and GLS2, which support glutamine metabolism and the maintenance of the redox balance. Thus, in HLRCC cells, proteasome inhibition disrupts glucose and glutamine metabolism, restricting nutrients and lowering the cells' anti-oxidant response capacity. Although the cytotoxicity induced by proteasome inhibitors is complex, the understanding of their metabolic effects in HLRCC may lead to the development of effective therapeutic strategies or to the development of markers of efficacy.


Asunto(s)
Fumarato Hidratasa/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/tratamiento farmacológico , Lactonas/farmacología , Leiomiomatosis/tratamiento farmacológico , Síndromes Neoplásicos Hereditarios/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Pirroles/farmacología , Proteína Sequestosoma-1/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Uterinas/tratamiento farmacológico , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Femenino , Fumarato Hidratasa/deficiencia , Mutación de Línea Germinal , Glutaminasa/genética , Glutaminasa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Leiomiomatosis/genética , Leiomiomatosis/metabolismo , Leiomiomatosis/patología , Ratones , Ratones Desnudos , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/metabolismo , Síndromes Neoplásicos Hereditarios/patología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína Sequestosoma-1/antagonistas & inhibidores , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
BMC Cancer ; 19(1): 917, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519159

RESUMEN

BACKGROUND: Renal cell carcinomas (RCC) harboring a TFE3 gene fusion (TfRCC) represent an aggressive subset of kidney tumors. Key signaling pathways of TfRCC are unknown and preclinical in vivo data are lacking. We investigated Akt/mTOR pathway activation and the preclinical efficacy of dual mTORC1/2 versus selective mTORC1 inhibition in TfRCC. METHODS: Levels of phosphorylated Akt/mTOR pathway proteins were compared by immunoblot in TfRCC and clear cell RCC (ccRCC) cell lines. Effects of the mTORC1 inhibitor, sirolimus, and the dual mTORC1/2 inhibitor, AZD8055, on Akt/mTOR activation, cell cycle progression, cell viability and cytotoxicity were compared in TfRCC cells. TfRCC xenograft tumor growth in mice was evaluated after 3-week treatment with oral AZD8055, intraperitoneal sirolimus and respective vehicle controls. RESULTS: The Akt/mTOR pathway was activated to a similar or greater degree in TfRCC than ccRCC cell lines and persisted partly during growth factor starvation, suggesting constitutive activation. Dual mTORC1/2 inhibition with AZD8055 potently inhibited TfRCC viability (IC50 = 20-50 nM) due at least in part to cell cycle arrest, while benign renal epithelial cells were relatively resistant (IC50 = 400 nM). Maximal viability reduction was greater with AZD8055 than sirolimus (80-90% versus 30-50%), as was the extent of Akt/mTOR pathway inhibition, based on significantly greater suppression of P-Akt (Ser473), P-4EBP1, P-mTOR and HIF1α. In mouse xenograft models, AZD8055 achieved significantly better tumor growth inhibition and prolonged mouse survival compared to sirolimus or vehicle controls. CONCLUSIONS: Akt/mTOR activation is common in TfRCC and a promising therapeutic target. Dual mTORC1/2 inhibition suppresses Akt/mTOR signaling more effectively than selective mTORC1 inhibition and demonstrates in vivo preclinical efficacy against TFE3-fusion renal cell carcinoma.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carcinoma de Células Renales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Morfolinas/farmacología , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Discov ; 9(8): 1006-1021, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31088840

RESUMEN

Kidney cancer is not a single disease but represents several distinct types of cancer that have defining histologies and genetic alterations and that follow different clinical courses and have different responses to therapy. Mutation of genes associated with kidney cancer, such as VHL, FLCN, TFE3, FH, or SDHB, dysregulates the tumor's responses to changes in oxygen, iron, nutrient, or energy levels. The identification of these varying genetic bases of kidney cancer has increased our understanding of the biology of this cancer, allowing the development of targeted therapies and the appreciation that it is a cancer driven by metabolic alterations. SIGNIFICANCE: Kidney cancer is a complex disease composed of different types of cancer that present with different histologies, clinical courses, genetic changes, and responses to therapy. This review describes the known genetic changes within kidney cancer, how they alter tumor metabolism, and how these metabolic changes can be therapeutically targeted.


Asunto(s)
Susceptibilidad a Enfermedades , Metabolismo Energético , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Animales , Biomarcadores , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Renales/patología , Neoplasias Renales/terapia , Mitocondrias/metabolismo , Mutación , Oxígeno/metabolismo , Transducción de Señal
14.
Mol Cancer Res ; 17(8): 1613-1626, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31043488

RESUMEN

Renal cell carcinoma (RCC) associated with Xp11.2 translocation (TFE3-RCC) has been recently defined as a distinct subset of RCC classified by characteristic morphology and clinical presentation. The Xp11 translocations involve the TFE3 transcription factor and produce chimeric TFE3 proteins retaining the basic helix-loop-helix leucine zipper structure for dimerization and DNA binding suggesting that chimeric TFE3 proteins function as oncogenic transcription factors. Diagnostic biomarkers and effective forms of therapy for advanced cases of TFE3-RCC are as yet unavailable. To facilitate the development of molecular based diagnostic tools and targeted therapies for this aggressive kidney cancer, we generated a translocation RCC mouse model, in which the PRCC-TFE3 transgene is expressed specifically in kidneys leading to the development of RCC with characteristic histology. Expression of the receptor tyrosine kinase Ret was elevated in the kidneys of the TFE3-RCC mice, and treatment with RET inhibitor, vandetanib, significantly suppressed RCC growth. Moreover, we found that Gpnmb (Glycoprotein nonmetastatic B) expression was notably elevated in the TFE3-RCC mouse kidneys as seen in human TFE3-RCC tumors, and confirmed that GPNMB is the direct transcriptional target of TFE3 fusions. While GPNMB IHC staining was positive in 9/9 cases of TFE3-RCC, Cathepsin K, a conventional marker for TFE3-RCC, was positive in only 67% of cases. These data support RET as a potential target and GPNMB as a diagnostic marker for TFE3-RCC. The TFE3-RCC mouse provides a preclinical in vivo model for the development of new biomarkers and targeted therapeutics for patients affected with this aggressive form of RCC. IMPLICATIONS: Key findings from studies with this preclinical mouse model of TFE3-RCC underscore the potential for RET as a therapeutic target for treatment of patients with TFE3-RCC, and suggest that GPNMB may serve as diagnostic biomarker for TFE3 fusion RCC.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carcinoma de Células Renales/patología , Cromosomas Humanos X , Neoplasias Renales/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de Fusión Oncogénica , Translocación Genética , Adolescente , Adulto , Anciano , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proteínas de Ciclo Celular/genética , Proliferación Celular , Niño , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Adulto Joven
16.
Oncotarget ; 9(26): 18454-18479, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719618

RESUMEN

We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

17.
Cell Rep ; 23(1): 313-326.e5, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617669

RESUMEN

Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Genoma Humano , Neoplasias Renales/genética , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Redes y Vías Metabólicas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
18.
Genes Chromosomes Cancer ; 56(10): 719-729, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28736828

RESUMEN

Chromophobe renal cell carcinoma (ChRCC) represents 5% of all RCC cases and frequently demonstrates multiple chromosomal losses and an indolent pattern of local growth, but can demonstrate aggressive features and resistance to treatment in a metastatic setting. Cell line models are an important tool for the investigation of tumor biology and therapeutic drug efficacy. Currently, there are few ChRCC-derived cell lines and none is well characterized. This study characterizes a novel ChRCC-derived cell line model, UOK276. A large ChRCC tumor with regions of sarcomatoid differentiation was used to establish a spontaneously immortal cell line, UOK276. UOK276 was evaluated for chromosomal, mutational, and metabolic aberrations. The UOK276 cell line is hyperdiploid with a modal number of 49 chromosomes per cell, and evidence of copy-neutral loss of heterozygosity, as opposed to the classic pattern of ChRCC chromosomal losses. UOK276 demonstrated a TP53 missense mutation, expressed mutant TP53 protein, and responded to treatment with a small-molecule therapeutic agent, NSC319726, designed to reactivate mutated TP53. Xenograft tumors grew in nude mice and provide an in vivo animal model for the investigation of potential therapeutic regimes. The xenograft pathology and genetic analysis suggested that UOK276 was derived from the sarcomatoid region of the original tumor. In summary, UOK276 represents a novel in vitro and in vivo cell line model for aggressive, sarcomatoid-differentiated, TP53 mutant ChRCC. This preclinical model system could be used to investigate the novel biology of aggressive, sarcomatoid ChRCC and evaluate the new therapeutic regimes.


Asunto(s)
Carcinoma de Células Renales/genética , Cariotipo , Neoplasias Renales/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Mutación Missense , Proteína p53 Supresora de Tumor/genética
19.
Hum Reprod ; 32(5): 1100-1107, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333293

RESUMEN

STUDY QUESTION: Does selection for mtDNA mutations occur in human oocytes? SUMMARY ANSWER: We provide statistical evidence in favor of the existence of purifying selection for mtDNA mutations in human oocytes acting between the expulsion of the first and second polar bodies (PBs). WHAT IS KNOWN ALREADY: Several lines of evidence in Metazoa, including humans, indicate that variation within the germline of mitochondrial genomes is under purifying selection. The presence of this internal selection filter in the germline has important consequences for the evolutionary trajectory of mtDNA. However, the nature and localization of this internal filter are still unclear while several hypotheses are proposed in the literature. STUDY DESIGN, SIZE, DURATION: In this study, 60 mitochondrial genomes were sequenced from 17 sets of oocytes, first and second PBs, and peripheral blood taken from nine women between 38 and 43 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole genome amplification was performed only on the single cell samples and Sanger sequencing was performed on amplicons. The comparison of variant profiles between first and second PB sequences showed no difference in substitution rates but displayed instead a sharp difference in pathogenicity scores of protein-coding sequences using three different metrics (MutPred, Polyphen and SNPs&GO). MAIN RESULTS AND THE ROLE OF CHANCE: Unlike the first, second PBs showed no significant differences in pathogenic scores with blood and oocyte sequences. This suggests that a filtering mechanism for disadvantageous variants operates during oocyte development between the expulsion of the first and second PB. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The sample size is small and further studies are needed before this approach can be used in clinical practice. Studies on a model organism would allow the sample size to be increased. WIDER IMPLICATIONS OF THE FINDINGS: This work opens the way to the study of the correlation between mtDNA mutations, mitochondrial capacity and viability of oocytes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a SISMER grant. Laboratory facilities and skills were freely provided by SISMER, and by the Alma Mater Studiorum, University of Bologna. The authors have no conflict of interest to disclose.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Oocitos/metabolismo , Oogénesis/genética , Adulto , Femenino , Genoma Mitocondrial , Humanos , Oocitos/citología
20.
Hum Mol Genet ; 26(2): 354-366, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007907

RESUMEN

Germline H255Y and K508R missense mutations in the folliculin (FLCN) gene have been identified in patients with bilateral multifocal (BMF) kidney tumours and clinical manifestations of Birt-Hogg-Dubé (BHD) syndrome, or with BMF kidney tumours as the only manifestation; however, their impact on FLCN function remains to be determined. In order to determine if FLCN H255Y and K508R missense mutations promote aberrant kidney cell proliferation leading to pathogenicity, we generated mouse models expressing these mutants using BAC recombineering technology and investigated their ability to rescue the multi-cystic phenotype of Flcn-deficient mouse kidneys. Flcn H255Y mutant transgene expression in kidney-targeted Flcn knockout mice did not rescue the multi-cystic kidney phenotype. However, expression of the Flcn K508R mutant transgene partially, but not completely, abrogated the phenotype. Notably, expression of the Flcn K508R mutant transgene in heterozygous Flcn knockout mice resulted in development of multi-cystic kidneys and cardiac hypertrophy in some mice. These results demonstrate that both FLCN H255Y and K508R missense mutations promote aberrant kidney cell proliferation, but to different degrees. Based on the phenotypes of our preclinical models, the FLCN H255Y mutant protein has lost it tumour suppressive function leading to the clinical manifestations of BHD, whereas the FLCN K508R mutant protein may have a dominant negative effect on the function of wild-type FLCN in regulating kidney cell proliferation and, therefore, act as an oncoprotein. These findings may provide mechanistic insight into the role of FLCN in regulating kidney cell proliferation and facilitate the development of novel therapeutics for FLCN-deficient kidney cancer.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/genética , Enfermedades Renales Quísticas/genética , Neoplasias Renales/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Animales , Síndrome de Birt-Hogg-Dubé/patología , Cardiomegalia/genética , Cardiomegalia/patología , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Mutación de Línea Germinal , Humanos , Riñón/patología , Enfermedades Renales Quísticas/patología , Neoplasias Renales/patología , Ratones , Ratones Noqueados , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA