Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell Metab ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38986617

RESUMEN

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.

2.
J Biol Chem ; 299(11): 105343, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838173

RESUMEN

At least 0.5% of people in the Western world develop inflammatory bowel disease (IBD). While antibodies that block tumor necrosis factor (TNF) α and Interleukin (IL-)23 have been approved for the treatment of IBD, IL-6 antibodies failed in the phase II clinical trial due to non-tolerable side effects. However, two clinical phase II studies suggest that inhibiting IL-6/soluble IL-6R (sIL-6R)-induced trans-signaling via the cytokine receptor gp130 benefit IBD patients with fewer adverse events. Here we develop inhibitors targeting a combination of IL-6/sIL-6R and TNF or IL-12/IL-23 signaling, named cs130-TNFVHHFc and cs130-IL-12/23VHHFc. Surface plasmon resonance experiments showed that recombinant cs130-TNFVHHFc and cs130-IL-12/23VHHFc bind with high affinity to IL-6/sIL-6R complexes and human TNFα (hTNFα) or IL-12/IL-23, respectively. Immunoprecipitation experiments have verified the higher ordered complex formation of the inhibitors with IL-6/sIL-6R and IL-12. We demonstrated that cs130-TNFVHHFc and cs130-IL-12/23VHHFc block IL-6/sIL-6R trans-signaling-induced proliferation and STAT3 phosphorylation of Ba/F3-gp130 cells, as well as hTNFα- or IL-23-induced signaling, respectively. In conclusion, cs130-TNFVHHFc and cs130-IL-12/23VHHFc represent a class of dimeric and bispecific chimeric cytokine inhibitors that consist of a soluble cytokine receptor fused to anti-cytokine nanobodies.


Asunto(s)
Receptor gp130 de Citocinas , Interleucina-12 , Interleucina-23 , Anticuerpos de Dominio Único , Factor de Necrosis Tumoral alfa , Humanos , Receptor gp130 de Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Anticuerpos de Dominio Único/farmacología , Transducción de Señal
3.
Mol Cancer ; 22(1): 136, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582744

RESUMEN

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Ratones , Animales , Regulación hacia Arriba , Ratones Endogámicos C57BL , Virus de la Coriomeningitis Linfocítica/genética , Melanoma/tratamiento farmacológico
4.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566034

RESUMEN

Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFß1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Carcinogénesis/genética , Inflamación/genética
5.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489135

RESUMEN

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

6.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454869

RESUMEN

Pancreatic cancer is a fatal malignancy with poor prognosis and limited treatment options. Early detection in primary and secondary locations is critical, but fraught with challenges. While digital pathology can assist with the classification of histopathological images, the training of such networks always relies on a ground truth, which is frequently compromised as tissue sections contain several types of tissue entities. Here we show that pancreatic cancer can be detected on hematoxylin and eosin (H&E) sections by convolutional neural networks using deep transfer learning. To improve the ground truth, we describe a preprocessing data clean-up process using two communicators that were generated through existing and new datasets. Specifically, the communicators moved image tiles containing adipose tissue and background to a new data class. Hence, the original dataset exhibited improved labeling and, consequently, a higher ground truth accuracy. Deep transfer learning of a ResNet18 network resulted in a five-class accuracy of about 94% on test data images. The network was validated with independent tissue sections composed of healthy pancreatic tissue, pancreatic ductal adenocarcinoma, and pancreatic cancer lymph node metastases. The screening of different models and hyperparameter fine tuning were performed to optimize the performance with the independent tissue sections. Taken together, we introduce a step of data preprocessing via communicators as a means of improving the ground truth during deep transfer learning and hyperparameter tuning to identify pancreatic ductal adenocarcinoma primary tumors and metastases in histological tissue sections.

7.
Nat Commun ; 13(1): 1789, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379825

RESUMEN

The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.


Asunto(s)
Glutamato-Cisteína Ligasa , Tejido Linfoide , Animales , Linfocitos B , Glutatión/metabolismo , Tejido Linfoide/metabolismo , Ratones , Oxidación-Reducción
8.
Cancer Res ; 82(2): 264-277, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810198

RESUMEN

Emerging evidence indicates B-cell activating factor (BAFF, Tnfsf13b) to be an important cytokine for antitumor immunity. In this study, we generated a BAFF-overexpressing B16.F10 melanoma cell model and found that BAFF-expressing tumors grow more slowly in vivo than control tumors. The tumor microenvironment (TME) of BAFF-overexpressing tumors had decreased myeloid infiltrates with lower PD-L1 expression. Monocyte depletion and anti-PD-L1 antibody treatment confirmed the functional importance of monocytes for the phenotype of BAFF-mediated tumor growth delay. RNA sequencing analysis confirmed that monocytes isolated from BAFF-overexpressing tumors were characterized by a less exhaustive phenotype and were enriched for in genes involved in activating adaptive immune responses and NF-κB signaling. Evaluation of patients with late-stage metastatic melanoma treated with inhibitors of the PD-1/PD-L1 axis demonstrated a stratification of patients with high and low BAFF plasma levels. Patients with high BAFF levels experienced lower responses to anti-PD-1 immunotherapies. In summary, these results show that BAFF, through its effect on tumor-infiltrating monocytes, not only impacts primary tumor growth but can serve as a biomarker to predict response to anti-PD-1 immunotherapy in advanced disease. SIGNIFICANCE: The BAFF cytokine regulates monocytes in the melanoma microenvironment to suppress tumor growth, highlighting the importance of BAFF in antitumor immunity.


Asunto(s)
Factor Activador de Células B/metabolismo , Tolerancia Inmunológica/genética , Melanoma Experimental/inmunología , Monocitos/inmunología , Neoplasias Cutáneas/inmunología , Microambiente Tumoral/inmunología , Inmunidad Adaptativa , Animales , Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/metabolismo , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transfección , Microambiente Tumoral/genética
9.
J Virol ; 96(4): e0162221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34935434

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can induce mild to life-threatening symptoms. Especially individuals over 60 years of age or with underlying comorbidities, including heart or lung disease and diabetes, or immunocompromised patients are at a higher risk. Fatal multiorgan damage in coronavirus disease 2019 (COVID-19) patients can be attributed to an interleukin-6 (IL-6)-dominated cytokine storm. Consequently, IL-6 receptor (IL-6R) monoclonal antibody treatment for severe COVID-19 cases has been approved for therapy. High concentrations of soluble IL-6R (sIL-6R) were found in COVID-19 intensive care unit patients, suggesting the involvement of IL-6 trans-signaling in disease pathology. Here, in analogy to bispecific antibodies (bsAbs), we developed the first bispecific IL-6 trans-signaling inhibitor, c19s130Fc, which blocks viral infection and IL-6 trans-signaling. c19s130Fc is a designer protein of the IL-6 trans-signaling inhibitor cs130 fused to a single-domain nanobody directed against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. c19s130Fc binds with high affinity to IL-6:sIL-6R complexes as well as the spike protein of SARS-CoV-2, as shown by surface plasmon resonance. Using cell-based assays, we demonstrate that c19s130Fc blocks IL-6 trans-signaling-induced proliferation and STAT3 phosphorylation in Ba/F3-gp130 cells as well as SARS-CoV-2 infection and STAT3 phosphorylation in Vero cells. Taken together, c19s130Fc represents a new class of bispecific inhibitors consisting of a soluble cytokine receptor fused to antiviral nanobodies and principally demonstrates the multifunctionalization of trans-signaling inhibitors. IMPORTANCE The availability of effective SARS-CoV-2 vaccines is a large step forward in managing the pandemic situation. In addition, therapeutic options, e.g., monoclonal antibodies to prevent viral cell entry and anti-inflammatory therapies, including glucocorticoid treatment, are currently developed or in clinical use to treat already infected patients. Here, we report a novel dual-specificity inhibitor to simultaneously target SARS-CoV-2 infection and virus-induced hyperinflammation. This was achieved by fusing an inhibitor of viral cell entry with a molecule blocking IL-6, a key mediator of SARS-CoV-2-induced hyperinflammation. Through this dual action, this molecule may have the potential to efficiently ameliorate symptoms of COVID-19 in infected individuals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Receptor gp130 de Citocinas , Interleucina-6/metabolismo , Proteínas Recombinantes de Fusión , Transducción de Señal/efectos de los fármacos , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , COVID-19/metabolismo , Chlorocebus aethiops , Receptor gp130 de Citocinas/química , Receptor gp130 de Citocinas/genética , Humanos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Células Vero
10.
Biol Chem ; 402(9): 1115-1128, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34192832

RESUMEN

A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.


Asunto(s)
Hígado , Proteína ADAM17 , Animales , Humanos
11.
Viruses ; 13(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918368

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 and is responsible for the ongoing pandemic. Screening of potential antiviral drugs against SARS-CoV-2 depend on in vitro experiments, which are based on the quantification of the virus titer. Here, we used virus-induced cytopathic effects (CPE) in brightfield microscopy of SARS-CoV-2-infected monolayers to quantify the virus titer. Images were classified using deep transfer learning (DTL) that fine-tune the last layers of a pre-trained Resnet18 (ImageNet). To exclude toxic concentrations of potential drugs, the network was expanded to include a toxic score (TOX) that detected cell death (CPETOXnet). With this analytic tool, the inhibitory effects of chloroquine, hydroxychloroquine, remdesivir, and emetine were validated. Taken together we developed a simple method and provided open access implementation to quantify SARS-CoV-2 titers and drug toxicity in experimental settings, which may be adaptable to assays with other viruses. The quantification of virus titers from brightfield images could accelerate the experimental approach for antiviral testing.


Asunto(s)
Antivirales/farmacología , Aprendizaje Profundo , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Aprendizaje Automático , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Animales , COVID-19 , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus , Fosfoproteínas , Células Vero , Carga Viral/efectos de los fármacos
12.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33163980

RESUMEN

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Amitriptilina/farmacología , Animales , Antidepresivos/farmacología , Ceramidas/antagonistas & inhibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Ceramidasa Neutra/farmacología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética
13.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008037

RESUMEN

The inability of tumor-infiltrating T lymphocytes to eradicate tumor cells within the tumor microenvironment (TME) is a major obstacle to successful immunotherapeutic treatments. Understanding the immunosuppressive mechanisms within the TME is paramount to overcoming these obstacles. T cell senescence is a critical dysfunctional state present in the TME that differs from T cell exhaustion currently targeted by many immunotherapies. This review focuses on the physiological, molecular, metabolic and cellular processes that drive CD8+ T cell senescence. Evidence showing that senescent T cells hinder immunotherapies is discussed, as are therapeutic options to reverse T cell senescence.

14.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911849

RESUMEN

The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled "inactive" rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas ADAM/genética , Proteína ADAM17/metabolismo , Animales , Proteínas Portadoras/metabolismo , Receptores ErbB/metabolismo , Humanos , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Transporte de Proteínas , Transducción de Señal , Especificidad por Sustrato , Factor de Necrosis Tumoral alfa/metabolismo
15.
Front Immunol ; 11: 1849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973762

RESUMEN

Immune activation within the tumor microenvironment is one promising approach to induce tumor regression. Certain viruses including oncolytic viruses such as the herpes simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not all tumor types respond to viro- and/or immunotherapy and mechanisms accounting for such differences remain to be defined. In our current investigation, we used the non-cytopathic LCMV in different human melanoma models and found that melanoma cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated cytotoxicity as new factors influencing melanoma regression during virotherapy.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Quimiocina CCL5/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Virus Oncolíticos/inmunología
17.
Pflugers Arch ; 472(9): 1401-1406, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32529300

RESUMEN

Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Linfocitos/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas de Transporte de Sodio-Glucosa/genética
19.
Cell Rep ; 31(2): 107494, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294445

RESUMEN

Paradoxically, early host responses to infection include the upregulation of the antiphagocytic molecule, CD47. This suggests that CD47 blockade could enhance antigen presentation and subsequent immune responses. Indeed, mice treated with anti-CD47 monoclonal antibody following lymphocytic choriomeningitis virus infections show increased activation of both macrophages and dendritic cells (DCs), enhancement of the kinetics and potency of CD8+ T cell responses, and significantly improved virus control. Treatment efficacy is critically dependent on both APCs and CD8+ T cells. In preliminary results from one of two cohorts of humanized mice infected with HIV-1 for 6 weeks, CD47 blockade reduces plasma p24 levels and restores CD4+ T cell counts. The results indicate that CD47 blockade not only enhances the function of innate immune cells but also links to adaptive immune responses through improved APC function. As such, immunotherapy by CD47 blockade may have broad applicability to treat a wide range of infectious diseases.


Asunto(s)
Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Virosis/inmunología , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Femenino , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Inmunoterapia/métodos , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
20.
Nat Commun ; 11(1): 1338, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165633

RESUMEN

Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.


Asunto(s)
Ceramidasa Ácida/metabolismo , Herpes Simple/enzimología , Herpes Simple/prevención & control , Herpesvirus Humano 1/fisiología , Macrófagos/enzimología , Cuerpos Multivesiculares/virología , Ceramidasa Ácida/genética , Animales , Femenino , Herpes Simple/virología , Humanos , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA