Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
2.
Front Immunol ; 15: 1335302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370412

RESUMEN

Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Línea Celular Tumoral , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/metabolismo
3.
J Biol Chem ; 298(6): 101911, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398353

RESUMEN

Neurotoxic amyloid ß-peptides are thought to be a causative agent of Alzheimer's disease in humans. The production of amyloid ß-peptides from amyloid precursor protein (APP) could be diminished by enhancing α-processing; however, the physical interactions between APP and α-secretases are not well understood. In this study, we employed super-resolution light microscopy to examine in cell-free plasma membranes the abundance and association of APP and α-secretases ADAM10 (a disintegrin and metalloproteinase) and ADAM17. We found that both secretase molecules localize similarly closely to APP (within ≤50 nm). However, when cross-linking APP with antibodies directed against the GFP tag of APP, in confocal microscopy, we observed that only ADAM10 coaggregated with APP. Furthermore, we mapped the involved protein domain by using APP variants with an exchanged transmembrane segment or lacking cytoplasmic/extracellular domains. We identified that the transmembrane domain of APP is required for association with α-secretases and, as analyzed by Western blot, for α-processing. We propose that the transmembrane domain of APP interacts either directly or indirectly with ADAM10, but not with ADAM17, explaining the dominant role of ADAM10 in α-processing of APP. Further understanding of this interaction may facilitate the development of a therapeutic strategy based on promoting APP cleavage by α-secretases.


Asunto(s)
Proteína ADAM10 , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos
4.
Elife ; 102021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779769

RESUMEN

SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin clusters in a SNARE-domain-dependent manner. Our data suggest that SNARE domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose these mechanisms preserve active syntaxin 1A-SNAP25 complexes at the plasma membrane.


Asunto(s)
Proteínas SNARE/genética , Proteína 25 Asociada a Sinaptosomas/genética , Sintaxina 1/genética , Animales , Células Hep G2 , Humanos , Células PC12 , Mapas de Interacción de Proteínas , Ratas , Proteínas SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo
5.
Med Microbiol Immunol ; 209(4): 447-459, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32535702

RESUMEN

Tetraspanins are master organizers of the cell membrane. Recent evidence suggests that tetraspanins themselves may become crowded by virus particles and that these crowds/aggregates co-internalize with the viral particles. Using microscopy, we studied human papillomavirus (HPV) type 16-dependent aggregates on the cell surface of tetraspanin overexpressing keratinocytes. We find that aggregates are (1) rich in at least two different tetraspanins, (2) three-dimensional architectures extending up to several micrometers into the cell, and (3) decorated intracellularly by filamentous actin. Moreover, in cells not overexpressing tetraspanins, we note that obscurin-like protein 1 (OBSL1), which is thought to be a cytoskeletal adaptor, associates with filamentous actin. We speculate that HPV contact with the cell membrane could trigger the formation of a large tetraspanin web. This web may couple the virus contact site to the intracellular endocytic actin machinery, possibly involving the cytoskeletal adaptor protein OBSL1. Functionally, such a tetraspanin web could serve as a virus entry platform, which is co-internalized with the virus particle.


Asunto(s)
Actinas/fisiología , Proteínas del Citoesqueleto/fisiología , Papillomavirus Humano 16/fisiología , Tetraspanina 24/fisiología , Tetraspanina 30/fisiología , Endocitosis , Células HaCaT/virología , Células HeLa/ultraestructura , Células HeLa/virología , Células Hep G2/virología , Humanos , Microscopía Confocal , Microscopía Electrónica , Infecciones por Papillomavirus/virología , Plaquinas/fisiología , Virión/fisiología , Virión/ultraestructura , Internalización del Virus
6.
Sci Rep ; 10(1): 5356, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210347

RESUMEN

During cell invasion, human papillomaviruses use large CD151 patches on the cell surface. Here, we studied whether these patches are defined architectures with features for virus binding and/or internalization. Super-resolution microscopy reveals that the patches are assemblies of closely associated nanoclusters of CD151, integrin α3 and integrin α6. Integrin α6 is required for virus attachment and integrin α3 for endocytosis. We propose that CD151 organizes viral entry platforms with different types of integrin clusters for different functionalities. Since numerous viruses use tetraspanin patches, we speculate that this building principle is a blueprint for cell-surface architectures utilized by viral particles.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Papillomavirus Humano 16/patogenicidad , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Internalización del Virus , Actinas/metabolismo , Línea Celular , Humanos , Integrina alfa3/genética , Integrina alfa6/genética , Queratinocitos/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Tetraspanina 24/metabolismo , Virión/metabolismo , Virión/patogenicidad
7.
Methods Mol Biol ; 1988: 249-257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147944

RESUMEN

Antigen-presenting cells (APCs), especially macrophages and dendritic cells (DCs), are important for the induction of an adaptive immune response through their phagocytic capacity. APCs internalize extracellular antigens and, dependent on their intracellular localization, antigen-derived peptides are presented on MHC I or MHC II molecules. In context of antigen presentation and T cell activation tracking of internalized antigens is of high interest. In this article, we provide an immunofluorescence protocol and illustrate the analysis of intracellular routing of internalized antigens using the example of the model-antigen ovalbumin (OVA) in bone marrow-derived dendritic cells (BM-DCs). This protocol describes a procedure to stain such cells with an antibody against EEA-1, a marker for early endosomes, which can be easily adapted to other endosome markers, antigen-presenting cells, or antigens.


Asunto(s)
Antígenos/metabolismo , Endocitosis , Espacio Intracelular/metabolismo , Microscopía Fluorescente/métodos , Animales , Células de la Médula Ósea/citología , Análisis de Datos , Células Dendríticas/metabolismo , Ratones
8.
Elife ; 82019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31107240

RESUMEN

Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.


Asunto(s)
Proteína ADAM17/genética , Infecciones por Papillomavirus/genética , Tetraspanina 24/genética , Carcinogénesis/genética , Membrana Celular/virología , Endocitosis/genética , Receptores ErbB/genética , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidad , Humanos , Queratinocitos/metabolismo , Queratinocitos/virología , Sistema de Señalización de MAP Quinasas/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Virión/genética , Virión/patogenicidad , Internalización del Virus
9.
Biophys J ; 114(5): 1128-1141, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539399

RESUMEN

Plasma membrane proteins organize into structures named compartments, microdomains, rafts, phases, crowds, or clusters. These structures are often smaller than 100 nm in diameter. Despite their importance in many cellular functions, little is known about their inner organization. For instance, how densely are molecules packed? Being aware of the protein compaction may contribute to our general understanding of why such structures exist and how they execute their functions. In this study, we have investigated plasma membrane crowds formed by the amyloid precursor protein (APP), a protein well known for its involvement in Alzheimer's disease. By combining biochemical experiments with conventional and super-resolution stimulated emission depletion microscopy, we quantitatively determined the protein packing density within APP crowds. We found that crowds occurring with reasonable frequency contain between 20 and 30 molecules occupying a spherical area with a diameter between 65 and 85 nm. Additionally, we found the vast majority of plasmalemmal APP residing in these crowds. The model suggests a high molecular density of protein material within plasmalemmal APP crowds. This should affect the protein's biochemical accessibility and processing by nonpathological α-secretases. As clustering of APP is a prerequisite for endocytic entry into the pathological processing pathway, elucidation of the packing density also provides a deeper understanding of this part of APP's life cycle.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Membrana Celular/química , Animales , Línea Celular Tumoral , Modelos Moleculares , Conformación Proteica
10.
Elife ; 62017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722652

RESUMEN

Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes.


Asunto(s)
Citoplasma/metabolismo , Multimerización de Proteína , Sintaxina 1/metabolismo , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Mapas de Interacción de Proteínas
11.
Biochem Soc Trans ; 45(2): 489-497, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28408489

RESUMEN

Members of the tetraspanin family have been identified as essential cellular membrane proteins in infectious diseases by nearly all types of pathogens. The present review highlights recently published data on the role of tetraspanin CD151, CD81, and CD63 and their interaction partners in host cell entry by human cytomegalo- and human papillomaviruses. Moreover, we discuss a model for tetraspanin assembly into trafficking platforms at the plasma membrane. These platforms might persist during intracellular viral trafficking.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Tetraspaninas/metabolismo , Proteínas Virales/metabolismo , Membrana Celular/metabolismo , Citomegalovirus/fisiología , Humanos , Modelos Moleculares , Papillomaviridae/fisiología , Tetraspanina 24/química , Tetraspanina 24/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Tetraspanina 30/química , Tetraspanina 30/metabolismo , Tetraspaninas/química , Internalización del Virus
12.
Elife ; 62017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28240595

RESUMEN

The SNAREs SNAP25 and SNAP23 are proteins that are initially cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins for the target membrane. In experiments with rat neuroendocrine cells, we find that a few basic amino acids in the cysteine-rich region of SNAP25 and SNAP23 are essential for plasma membrane targeting. Reconstitution of membrane-protein binding in a liposome assay shows that the mechanism involves protein electrostatics between basic amino acid residues and acidic lipids such as phosphoinositides that play a primary role in these interactions. Hence, we identify an electrostatic anchoring mechanism underlying initial plasma membrane contact by SNARE proteins, which subsequently become palmitoylated at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Liposomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/química , Membrana Celular/ultraestructura , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Liposomas/química , Lipoilación , Células PC12 , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
13.
FASEB J ; 31(4): 1650-1667, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119397

RESUMEN

Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.


Asunto(s)
Endosomas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Endosomas/virología , Antígenos HLA-D/metabolismo , Antígenos HLA-DR/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas , Tetraspanina 30/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas de Unión al GTP rab5/metabolismo
14.
Sci Rep ; 6: 24131, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052788

RESUMEN

Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca(2+) and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca(2+) ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca(2+) ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems.


Asunto(s)
Iones/química , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas/química , Animales , Calcio/química , Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Iones/metabolismo , Magnesio/química , Magnesio/metabolismo , Microscopía Confocal , Células PC12 , Unión Proteica , Dominios Proteicos , Proteínas/metabolismo , Ratas , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
15.
J Membr Biol ; 249(1-2): 41-56, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26438553

RESUMEN

Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico , Línea Celular Tumoral , Colesterol/metabolismo , Humanos , Microscopía Fluorescente , Fosfatidilcolinas/metabolismo
16.
Biophys J ; 107(1): 100-13, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988345

RESUMEN

CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.


Asunto(s)
Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Tetraspanina 28/química , Células Hep G2 , Humanos , Células Jurkat , Lipoilación , Unión Proteica , Estructura Terciaria de Proteína , Tetraspanina 28/metabolismo
17.
Nat Commun ; 5: 4509, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25060237

RESUMEN

Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Actinas/metabolismo , Animales , Células COS , Fusión Celular , Membrana Celular/química , Chlorocebus aethiops , Colesterol/metabolismo , Química Clic , Citoesqueleto/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de la Membrana/análisis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Células PC12 , Ratas
18.
Curr Top Membr ; 72: 193-230, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210431

RESUMEN

Exocytosis is catalyzed by the engagement of SNARE proteins embedded in the plasma membrane with complementary SNAREs in the membrane of trafficking vesicles undergoing exocytosis. In most cells studied so far, SNAREs are not randomly distributed across the plasma membrane but are clustered and segregated in discrete membrane domains of defined size, composition, and stability. SNARE clusters have been intensively studied for more than a decade. Different mechanisms have been proposed to be responsible for SNARE clustering such as partitioning into cholesterol-enriched lipid rafts, hydrophobic mismatch, posttranslational modifications of the SNAREs including phosphorylation and palmitoylation, electrostatic protein-protein and protein-lipid interactions, homotypic and heterotypic protein interactions, and anchoring to the cortical cytoskeleton. Although several of these proposed mechanisms are still controversially discussed, it is becoming apparent that independent physicochemical principles must cooperate in a synergistic manner to yield SNARE microdomains. Here, we discuss the architecture and function of SNARE domains. We also discuss the various factors influencing SNARE clustering, resulting in a model that we believe may be of general use to explain domain formation of proteins in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Análisis por Conglomerados , Citoesqueleto/química , Citoesqueleto/metabolismo , Exocitosis , Lipoilación , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Ratones , Simulación de Dinámica Molecular , Células PC12 , Fosforilación , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/química
19.
PLoS One ; 8(3): e59871, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555818

RESUMEN

Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.


Asunto(s)
Proteínas Portadoras/fisiología , Membrana Celular/metabolismo , Gangliósido G(M1)/metabolismo , Transporte Biológico , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Células Jurkat , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Mutación
20.
Biophys J ; 102(6): 1411-7, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22455924

RESUMEN

The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-ß (Aß) domain. In the human brain, endosomal processing of APP produces neurotoxic Aß-peptides, which are involved in Alzheimer's disease. Here, we show that the Aß sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aß concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aß stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aß domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Animales , Clatrina/metabolismo , Espacio Extracelular/metabolismo , Células Hep G2 , Humanos , Espacio Intracelular/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células PC12 , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA