Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Discov Immunol ; 3(1): kyae013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290825

RESUMEN

CD4+ T cells are key players in immune-mediated inflammatory diseases (IMIDs) through the production of inflammatory mediators including tumour necrosis factor (TNF). Anti-TNF therapy has revolutionized the treatment of several IMIDs and we previously demonstrated that in vitro treatment of human CD4+ T cells with anti-TNF promotes anti-inflammatory IL-10 expression in multiple subpopulations of CD4+ T cells. Here we investigated the transcriptional mechanisms underlying the IL-10 induction by TNF-blockade in CD4+ T cells, isolated from PBMCs of healthy volunteers, stimulated in vitro for 3 days with anti-CD3/CD28 mAb in the absence or presence of anti-TNF. After culture, CD45RA+ cells were depleted before performing gene expression profiling and chromatin accessibility analysis. Gene expression analysis of CD45RA-CD4+ T cells showed a distinct anti-TNF specific gene signature of 183 genes (q-value < 0.05). Pathway enrichment analysis of differentially expressed genes revealed multiple pathways related to cytokine signalling and regulation of cytokine production; in particular, IL10 was the most upregulated gene by anti-TNF, while the proinflammatory cytokines and chemokines IFNG, IL9, IL22, and CXCL10 were significantly downregulated (q-value < 0.05). Transcription factor motif analysis at the differentially open chromatin regions, after anti-TNF treatment, revealed 58 transcription factor motifs enriched at the IL10 locus. We identified seven transcription factor candidates for the anti-TNF mediated regulation of IL-10, which were either differentially expressed or whose locus was differentially accessible upon anti-TNF treatment. Correlation analysis between the expression of these transcription factors and IL10 suggests a role for MAF, PRDM1, and/or EOMES in regulating IL10 expression in CD4+ T cells upon anti-TNF treatment.

2.
Nat Commun ; 14(1): 724, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759620

RESUMEN

The PML::RARA fusion protein is the hallmark driver of Acute Promyelocytic Leukemia (APL) and disrupts retinoic acid signaling, leading to wide-scale gene expression changes and uncontrolled proliferation of myeloid precursor cells. While known to be recruited to binding sites across the genome, its impact on gene regulation and expression is under-explored. Using integrated multi-omics datasets, we characterize the influence of PML::RARA binding on gene expression and regulation in an inducible PML::RARA cell line model and APL patient ex vivo samples. We find that genes whose regulatory elements recruit PML::RARA are not uniformly transcriptionally repressed, as commonly suggested, but also may be upregulated or remain unchanged. We develop a computational machine learning implementation called Regulatory Element Behavior Extraction Learning to deconvolute the complex, local transcription factor binding site environment at PML::RARA bound positions to reveal distinct signatures that modulate how PML::RARA directs the transcriptional response.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Línea Celular , Regulación de la Expresión Génica , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Multiómica , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Tretinoina/farmacología
3.
Proc Natl Acad Sci U S A ; 119(21): e2200022119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584114

RESUMEN

Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)­methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5­dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.


Asunto(s)
Metilación de ADN , Inflamación , S-Nitrosotioles , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Humanos , Inflamación/genética , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Retroelementos/genética
4.
J Immunol ; 208(4): 807-818, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35039330

RESUMEN

Granulomatosis with polyangiitis (GPA) is a potentially fatal small vessel vasculitis of unknown etiology, characterized by anti-neutrophil cytoplasmic autoantibodies, chronic inflammation, and granulomatous tissue damage. T cell dysregulation, comprising decreased regulatory T cell function and increased circulating effector memory follicular Th cells (TFH), is strongly associated with disease pathogenesis, but the mechanisms driving these observations are unknown. We undertook transcriptomic and functional analysis of naive CD4 T cells from patients with GPA to identify underlying functional defects that could manifest in the pathogenic profiles observed in GPA. Gene expression studies revealed a dysregulation of the IL-2 receptor ß/JAK-STAT signaling pathway and higher expression of BCL6 and BCL6-regulated genes in GPA naive CD4 T cells. IL-2-induced STAT5 activation in GPA naive CD4 T cells was decreased, whereas STAT3 activation by IL-6 and IL-2 was unperturbed. Consistently, BCL6 expression was sustained following T cell activation of GPA naive CD4 T cells and in vitro TFH differentiation of these cells resulted in significant increases in the production TFH-related cytokines IL-21 and IL-6. Thus, naive CD4 T cells are dysregulated in patients with GPA, resulting from an imbalance in signaling equilibrium and transcriptional changes that drives the skewed pathogenic CD4 effector immune response in GPA.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Granulomatosis con Poliangitis/etiología , Granulomatosis con Poliangitis/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Factor de Transcripción STAT5/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Adulto , Anciano , Diferenciación Celular/inmunología , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Granulomatosis con Poliangitis/diagnóstico , Humanos , Quinasas Janus/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Interleucina-2/metabolismo , Transducción de Señal , Transcriptoma , Adulto Joven
5.
Blood Adv ; 5(4): 1059-1068, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33599741

RESUMEN

Approximately 10% to 15% of patients with essential thrombocythemia (ET) lack the common driver mutations, so-called "triple-negative" (TN) disease. We undertook a systematic approach to investigate for somatic mutations and delineate gene expression signatures in 46 TN patients and compared the results to those with known driver mutations and healthy volunteers. Deep, error-corrected, next-generation sequencing of peripheral blood mononuclear cells using the HaloPlexHS platform and whole-exome sequencing was performed. Using this platform, 10 (22%) of 46 patients had detectable mutations (MPL, n = 6; JAK2V617F, n = 4) with 3 of 10 cases harboring germline MPL mutations. RNA-sequencing and DNA methylation analysis were also performed by using peripheral blood mononuclear cells. Pathway analysis comparing healthy volunteers and ET patients (regardless of mutational status) identified significant enrichment for genes in the tumor necrosis factor, NFκB, and MAPK pathways and upregulation of platelet proliferative drivers such as ITGA2B and ITGB3. Correlation with DNA methylation showed a consistent pattern of hypomethylation at upregulated gene promoters. Interrogation of these promoter regions highlighted enrichment of transcriptional regulators, which were significantly upregulated in patients with ET regardless of mutation status, including CEBPß and NFκB. For "true" TN ET, patterns of gene expression and DNA methylation were similar to those in ET patients with known driver mutations. These observations suggest that the resultant ET phenotype may, at least in part and regardless of mutation type, be driven by transcriptional misregulation and may propagate downstream via the MAPK, tumor necrosis factor, and NFκB pathways with resultant JAK-STAT activation. These findings identify potential novel mechanisms of disease initiation that require further evaluation.


Asunto(s)
Trombocitemia Esencial , Calreticulina/genética , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Trombopoyetina , Trombocitemia Esencial/genética , Transcriptoma
6.
Biomaterials ; 264: 120369, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977209

RESUMEN

With a dismal survival rate, pancreatic cancer (PC) remains one of the most aggressive and devastating malignancies, predominantly due to the absence of a valid biomarker for diagnosis and limited therapeutic options for advanced diseases. Exosomes (Exo) as cell-derived vesicles, are widely used as natural nanocarriers for drug delivery. P21-activated kinase 4 (PAK4) is oncogenic when overexpressed, promoting cell survival, migration and anchorage-independent growth. Herein we validated PAK4 as a therapeutic target in an in vivo PC tumour mouse model using Exo-mediated RNAi following intra-tumoural administration. PC derived Exo were firstly isolated by ultracentrifugation on sucrose cushion and characterised for their surface marker expression, size, number, purity and morphology. SiRNA was encapsulated into Exo via electroporation and dual uptake of Exo and siRNA was investigated by flow cytometry and confocal microscopy. In vitro siPAK4 silencing in PC cells following uptake was assessed by flow cytometry, western blotting, and in vitro scratch assay. In vivo efficacy (tumour growth delay and mouse survival) of siPAK4 was evaluated in PC bearing NSG mouse model. Ex vivo tumours were examined using Haematoxylin and eosin (H&E) staining and immunohistochemistry. Results showed high quality PC-derived PANC-1 Exo were obtained. SiRNA was incorporated in Exo with 16.5% encapsulation efficiency. In vitro imaging confirmed Exo and siRNA co-localisation in cells. PAK4 knockdown was successful with 30 nM Exo-siPAK4 at 24 h post incubation in vitro. Intra-tumoural administration of Exo-siPAK4 (0.03 mg/kg siPAK4 and 6.1 × 1011 Exo, each dose, two doses) reduced PC tumour growth in vivo and enhanced mice survival (p < 0.001), with minimal toxicity observed compared to polyethylenimine (PEI) used as a commercial transfection reagent. H&E staining of tumours showed significant tissue apoptosis in siPAK4 treated groups. PAK4 knockdown prolongs survival of PC-bearing mice suggesting its potential as a new therapeutic target for PC. PANC-1 Exo demonstrated comparable efficacy but safer profile than PEI as in vivo RNAi transfection reagent.


Asunto(s)
Exosomas , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Exosomas/metabolismo , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Interferencia de ARN , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
7.
J Immunol ; 204(11): 2940-2948, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321757

RESUMEN

The expression of anti-inflammatory IL-10 by CD4+ T cells is indispensable for immune homeostasis, as it allows T cells to moderate their effector function. We previously showed that TNF-α blockade during T cell stimulation in CD4+ T cell/monocyte cocultures resulted in maintenance of IL-10-producing T cells and identified IKZF3 as a putative regulator of IL-10. In this study, we tested the hypothesis that IKZF3 is a transcriptional regulator of IL-10 using a human CD4+ T cell-only culture system. IL-10+ CD4+ T cells expressed the highest levels of IKZF3 both ex vivo and after activation compared with IL-10-CD4+ T cells. Pharmacological targeting of IKZF3 with the drug lenalidomide showed that IKZF3 is required for anti-CD3/CD28 mAb-mediated induction of IL-10 but is dispensable for ex vivo IL-10 expression. However, overexpression of IKZF3 was unable to upregulate IL-10 at the mRNA or protein level in CD4+ T cells and did not drive the transcription of the IL10 promoter or putative local enhancer constructs. Collectively, these data indicate that IKZF3 is associated with but not sufficient for IL-10 expression in CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Factor de Transcripción Ikaros/metabolismo , Interleucina-10/metabolismo , ARN Mensajero/genética , Complejo CD3/inmunología , Técnicas de Cocultivo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Factor de Transcripción Ikaros/antagonistas & inhibidores , Factor de Transcripción Ikaros/genética , Lenalidomida/farmacología , Activación de Linfocitos , Factor de Necrosis Tumoral alfa/metabolismo
8.
Gut ; 69(3): 578-590, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792136

RESUMEN

OBJECTIVE: The functional role of interleukin-22 (IL22) in chronic inflammation is controversial, and mechanistic insights into how it regulates target tissue are lacking. In this study, we evaluated the functional role of IL22 in chronic colitis and probed mechanisms of IL22-mediated regulation of colonic epithelial cells. DESIGN: To investigate the functional role of IL22 in chronic colitis and how it regulates colonic epithelial cells, we employed a three-dimentional mini-gut epithelial organoid system, in vivo disease models and transcriptomic datasets in human IBD. RESULTS: As well as inducing transcriptional modules implicated in antimicrobial responses, IL22 also coordinated an endoplasmic reticulum (ER) stress response transcriptional programme in colonic epithelial cells. In the colon of patients with active colonic Crohn's disease (CD), there was enrichment of IL22-responsive transcriptional modules and ER stress response modules. Strikingly, in an IL22-dependent model of chronic colitis, targeting IL22 alleviated colonic epithelial ER stress and attenuated colitis. Pharmacological modulation of the ER stress response similarly impacted the severity of colitis. In patients with colonic CD, antibody blockade of IL12p40, which simultaneously blocks IL12 and IL23, the key upstream regulator of IL22 production, alleviated the colonic epithelial ER stress response. CONCLUSIONS: Our data challenge perceptions of IL22 as a predominantly beneficial cytokine in IBD and provide novel insights into the molecular mechanisms of IL22-mediated pathogenicity in chronic colitis. Targeting IL22-regulated pathways and alleviating colonic epithelial ER stress may represent promising therapeutic strategies in patients with colitis. TRIAL REGISTRATION NUMBER: NCT02749630.


Asunto(s)
Colitis/genética , Enfermedad de Crohn/fisiopatología , Estrés del Retículo Endoplásmico/genética , Células Epiteliales/fisiología , Interleucinas/farmacología , Transcripción Genética , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Enfermedad Crónica , Colitis/sangre , Colitis/tratamiento farmacológico , Colitis/patología , Colon/patología , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Humanos , Interleucina-17/farmacología , Interleucina-23/antagonistas & inhibidores , Interleucinas/sangre , Interleucinas/genética , Mucosa Intestinal/patología , Ratones , Organoides , Gravedad del Paciente , Fenilbutiratos/farmacología , Proteínas Recombinantes/farmacología , Transcripción Genética/efectos de los fármacos , Tunicamicina/farmacología , Respuesta de Proteína Desplegada , Ustekinumab/farmacología , Ustekinumab/uso terapéutico , Interleucina-22
9.
Gastroenterology ; 156(6): 1775-1787, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710527

RESUMEN

BACKGROUND & AIMS: Crohn's disease (CD) is characterized by an imbalance of effector and regulatory T cells in the intestinal mucosa. The efficacy of anti-adhesion therapies led us to investigate whether impaired trafficking of T-regulatory (Treg) cells contributes to the pathogenesis of CD. We also investigated whether proper function could be restored to Treg cells by ex vivo expansion in the presence of factors that activate their regulatory activities. METHODS: We measured levels of the integrin α4ß7 on Treg cells isolated from peripheral blood or lamina propria of patients with CD and healthy individuals (controls). Treg cells were expanded ex vivo and incubated with rapamycin with or without agonists of the retinoic acid receptor-α (RARA), and their gene expression profiles were analyzed. We also studied the cells in cytokine challenge, suppression, and flow chamber assays and in SCID mice with human intestinal xenografts. RESULTS: We found that Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. The pathway that regulates the expression of integrin subunit α is induced by retinoic acid (RA). Treg cells from patients with CD incubated with rapamycin and an agonist of RARA (RAR568) expressed high levels of integrin α4ß7, as well as CD62L and FOXP3, compared with cells incubated with rapamycin or rapamycin and all-trans retinoic acid. These Treg cells had increased suppressive activities in assays and migrated under conditions of shear flow; they did not produce inflammatory cytokines, and RAR568 had no effect on cell stability or lineage commitment. Fluorescently labeled Treg cells incubated with RAR568 were significantly more likely to traffic to intestinal xenografts than Treg cells expanded in control medium. CONCLUSIONS: Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. Incubation of patients' ex vivo expanded Treg cells with rapamycin and an RARA agonist induced expression of α4ß7 and had suppressive and migratory activities in culture and in intestinal xenografts in mice. These cells might be developed for treatment of CD. ClinicalTrials.gov, Number: NCT03185000.


Asunto(s)
Enfermedad de Crohn/inmunología , Integrinas/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Adulto , Animales , Antineoplásicos/farmacología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/metabolismo , Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Inmunosupresores/farmacología , Integrinas/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/trasplante , Selectina L/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Compuestos Orgánicos/farmacología , Sirolimus/farmacología , Linfocitos T Reguladores/inmunología , Transcriptoma/efectos de los fármacos , Tretinoina/farmacología
10.
Nat Commun ; 9(1): 4186, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305631

RESUMEN

The induction of human CD4+ Th1 cells requires autocrine stimulation of the complement receptor CD46 in direct crosstalk with a CD4+ T cell-intrinsic NLRP3 inflammasome. However, it is unclear whether human cytotoxic CD8+ T cell (CTL) responses also rely on an intrinsic complement-inflammasome axis. Here we show, using CTLs from patients with CD46 deficiency or with constitutively-active NLRP3, that CD46 delivers co-stimulatory signals for optimal CTL activity by augmenting nutrient-influx and fatty acid synthesis. Surprisingly, although CTLs express NLRP3, a canonical NLRP3 inflammasome is not required for normal human CTL activity, as CTLs from patients with hyperactive NLRP3 activity function normally. These findings establish autocrine complement and CD46 activity as integral components of normal human CTL biology, and, since CD46 is only present in humans, emphasize the divergent roles of innate immune sensors between mice and men.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ácidos Grasos/metabolismo , Proteína Cofactora de Membrana/metabolismo , Receptores de Complemento/metabolismo , Comunicación Autocrina , Linfocitos T CD4-Positivos/inmunología , Síndromes Periódicos Asociados a Criopirina/inmunología , Síndromes Periódicos Asociados a Criopirina/patología , Humanos , Activación de Linfocitos/inmunología , Modelos Biológicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T Citotóxicos/inmunología
11.
Mol Immunol ; 101: 419-428, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30081328

RESUMEN

Class-switch recombination (CSR) is an essential B cell process that alters the isotype of antibody produced by the B cell, tailoring the immune response to the nature of the invading pathogen. CSR requires the activity of the mutagenic enzyme AID (encoded by AICDA) to generate chromosomal lesions within the immunoglobulin genes that initiate the class switching recombination event. These AID-mediated mutations also participate in somatic-hypermutation of the immunoglobulin variable region, driving affinity maturation. As such, AID poses a significant oncogenic threat if it functions outside of the immunoglobulin locus. We found that expression of the microRNA, miR-29b, was repressed in B cells isolated from tonsil tissue, relative to circulating naïve B cells. Further investigation revealed that miR-29b was able to directly initiate the degradation of AID mRNA. Enforced overexpression of miR-29b in human B cells precipitated a reduction in overall AID protein and a corresponding diminution in CSR to IgE. Given miR-29b's ability to potently target AID, a mutagenic molecule that can initiate chromosomal translocations and "off-target" mutations, we propose that miR-29b acts to silence premature AID expression in naïve B cells, thus reducing the likelihood of inappropriate and potentially dangerous deamination activity.


Asunto(s)
Linfocitos B/enzimología , Citidina Desaminasa/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Activación Enzimática , Técnicas de Silenciamiento del Gen , Genoma Humano , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/metabolismo , MicroARNs/genética , Tonsila Palatina/citología , Recombinación Genética/genética
12.
Crit Care Med ; 45(5): 875-882, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28296810

RESUMEN

OBJECTIVE: Sepsis is life-threatening organ dysfunction due to dysregulated host responses to infection. Current knowledge of human B-cell alterations in sepsis is sparse. We tested the hypothesis that B-cell loss in sepsis involves distinct subpopulations of B cells and investigated mechanisms of B-cell depletion. DESIGN: Prospective cohort study. SETTING: Critical care units. PATIENTS: Adult sepsis patients without any documented immune comorbidity. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: B-cell subsets were quantified by flow cytometry; annexin-V status identified apoptotic cells and phosphorylation of intracellular kinases identified activation status of B-cell subsets. B cell-specific survival ligand concentrations were measured. Gene expression in purified B cells was measured by microarray. Differences in messenger RNA abundance between sepsis and healthy controls were compared. Lymphopenia present in 74.2% of patients on admission day was associated with lower absolute B-cell counts (median [interquartile range], 0.133 [0.093-0.277] 10 cells/L) and selective depletion of memory B cells despite normal B cell survival ligand concentrations. Greater apoptotic depletion of class-switched and IgM memory cells was associated with phosphorylation of extracellular signal-regulated kinases, implying externally driven lymphocyte stress and activation-associated cell death. This inference is supported by gene expression profiles highlighting mitochondrial dysfunction and cell death pathways, with enriched intrinsic and extrinsic pathway apoptosis genes. CONCLUSIONS: Depletion of the memory B-cell compartment contributes to the immunosuppression induced by sepsis. Therapies targeted at reversing this immune memory depletion warrant further investigation.


Asunto(s)
Apoptosis/fisiología , Linfocitos B/metabolismo , Sepsis/inmunología , Anciano , Anciano de 80 o más Años , Anexina A5/metabolismo , Subgrupos de Linfocitos B/metabolismo , Enfermedad Crítica , Ensayo de Inmunoadsorción Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Expresión Génica , Hospitales Universitarios , Humanos , Unidades de Cuidados Intensivos , Linfopenia/epidemiología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , ARN Mensajero , Sepsis/sangre , Sepsis/epidemiología , Análisis de Matrices Tisulares
13.
Am J Respir Crit Care Med ; 195(11): 1494-1508, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199128

RESUMEN

RATIONALE: Improving the early detection and chemoprevention of lung cancer are key to improving outcomes. The pathobiology of early squamous lung cancer is poorly understood. We have shown that amplification of sex-determining region Y-box 2 (SOX2) is an early and consistent event in the pathogenesis of this disease, but its functional oncogenic potential remains uncertain. We tested the impact of deregulated SOX2 expression in a novel organotypic system that recreates the molecular and microenvironmental context in which squamous carcinogenesis occurs. OBJECTIVES: (1) To develop an in vitro model of bronchial dysplasia that recapitulates key molecular and phenotypic characteristics of the human disease; (2) to test the hypothesis that SOX2 deregulation is a key early event in the pathogenesis of bronchial dysplasia; and (3) to use the model for studies on pathogenesis and chemoprevention. METHODS: We engineered the inducible activation of oncogenes in immortalized bronchial epithelial cells. We used three-dimensional tissue culture to build an organotypic model of bronchial dysplasia. MEASUREMENTS AND MAIN RESULTS: We recapitulated human bronchial dysplasia in vitro. SOX2 deregulation drives dysplasia, and loss of tumor promoter 53 is a cooperating genetic event that potentiates the dysplastic phenotype. Deregulated SOX2 alters critical genes implicated in hallmarks of cancer progression. Targeted inhibition of AKT prevents the initiation of the dysplastic phenotype. CONCLUSIONS: In the appropriate genetic and microenvironmental context, acute deregulation of SOX2 drives bronchial dysplasia. This confirms its oncogenic potential in human cells and affords novel insights into the impact of SOX2 deregulation. This model can be used to test therapeutic agents aimed at chemoprevention.


Asunto(s)
Displasia Broncopulmonar/genética , Displasia Broncopulmonar/fisiopatología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Factores de Transcripción SOXB1/genética , Técnicas de Cultivo de Célula , Humanos , Modelos Biológicos
14.
JCI Insight ; 2(2): e87379, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28138552

RESUMEN

Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-ß and further promoted the development of IL-10- and TGF-ß-secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/inmunología , Autoanticuerpos/inmunología , Inmunoglobulina G/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Peroxidasa/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo , Anticuerpos Anticitoplasma de Neutrófilos , Linfocitos T CD4-Positivos/inmunología , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Linfopoyesis , Factor Estimulante de Colonias de Macrófagos/inmunología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Fosfolípidos/metabolismo , Receptores Fc , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo
15.
Cell Rep ; 15(12): 2756-70, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27292648

RESUMEN

The transcription factor T-bet directs Th1 cell differentiation, but the molecular mechanisms that underlie this lineage-specific gene regulation are not completely understood. Here, we show that T-bet acts through enhancers to allow the recruitment of Mediator and P-TEFb in the form of the super elongation complex (SEC). Th1 genes are occupied by H3K4me3 and RNA polymerase II in Th2 cells, while T-bet-mediated recruitment of P-TEFb in Th1 cells activates transcriptional elongation. P-TEFb is recruited to both genes and enhancers, where it activates enhancer RNA transcription. P-TEFb inhibition and Mediator and SEC knockdown selectively block activation of T-bet target genes, and P-TEFb inhibition abrogates Th1-associated experimental autoimmune uveitis. T-bet activity is independent of changes in NF-κB RelA and Brd4 binding, with T-bet- and NF-κB-mediated pathways instead converging to allow P-TEFb recruitment. These data provide insight into the mechanism through which lineage-specifying factors promote differentiation of alternative T cell fates.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Células TH1/metabolismo , Elongación de la Transcripción Genética , Animales , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/genética , Humanos , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica/genética , ARN/genética , ARN/metabolismo , Células Th2/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Uveítis/genética
16.
J Allergy Clin Immunol ; 132(2): 446-54.e5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23694808

RESUMEN

BACKGROUND: The pruritic cytokine IL-31 has been shown to be expressed by murine activated effector T Lymphocytes of a TH2 phenotype. Like IL-17 and IL-22, IL-31 is a tissue-signaling cytokine the receptor of which is mainly found on nonimmune cells. An overabundance of IL-31 has been shown in patients with atopic disorders, including dermatitis, as well as asthma, and therefore represents a promising drug target, although its regulation in the context of the human TH2 clusters is not yet known. OBJECTIVE: We sought to address the gene regulation of human IL-31 and to test whether IL-31 possesses a similar proallergic function as members of the human TH2 cytokine family, such as IL-4, IL-5, and IL-13. METHODS: Polyclonal and purified protein derivative of tuburculin-specific T-cell clones were generated. TH phenotype was determined, and IL-31 was measured by means of ELISA. Gene expression of primary bronchial epithelial cells treated with IL-31 was also measured. RESULTS: IL-31 was expressed by all of the TH2 clones and not by TH1, TH17, or TH22. This expression was dependent on autocrine IL-4 expression from these clones because it could be reduced if blocking antibodies to IL-4 were present. Interestingly, TH1 clones were able to express IL-31 if IL-4 was added to culture. This IL-31 expression was transient and did not affect the phenotype of the TH1 clones. IL-31 was able to induce proinflammatory genes, such as CCL2 and granulocyte colony-stimulating factor. CONCLUSION: IL-31 is not a TH2 cytokine in the classical sense but is likely to be expressed by a number of cells in an allergic situation in which IL-4 is present and possibly contribute to the allergic reaction.


Asunto(s)
Regulación de la Expresión Génica , Hipersensibilidad Inmediata/inmunología , Inflamación/inmunología , Interleucina-4/inmunología , Interleucinas/metabolismo , Células Th2/inmunología , Animales , Bronquios , Citocinas/inmunología , Citocinas/metabolismo , Células Epiteliales , Humanos , Hipersensibilidad Inmediata/metabolismo , Inflamación/metabolismo , Interleucina-13/inmunología , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-5/inmunología , Interleucina-5/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Activación de Linfocitos/inmunología , Ratones
17.
Thorax ; 67(2): 183-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21836155

RESUMEN

The advent of RNA sequencing technology has stimulated rapid advances in our understanding of the transcriptome, including discovery of the vast RNA complement generated by transcript splice variation and the expansion of our knowledge of non-coding RNAs. One non-coding RNA subtype, microRNAs (miRNAs), are particularly well studied, primarily because of their important roles as post-transcriptional gene regulators. The first miRNA was identified in the early 1990s and there are now thought to be around 1000 distinct miRNAs in man, with each cell type expressing a distinct repertoire. Increasing evidence has implicated miRNAs as having causative roles in a variety of lung diseases and has driven investigations into their potential as therapeutic targets.


Asunto(s)
Enfermedades Pulmonares/genética , MicroARNs/genética , Animales , Asma/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Fibrosis Pulmonar/genética
18.
J Immunol ; 187(7): 3721-9, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21876034

RESUMEN

Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression. Chromatin immunoprecipitation studies revealed that IL-2 induced STAT5 binding to specific sites in the C-MAF promoter. These sites corresponded to regions enriched for markers of chromatin architectural features in both resting CD4 and differentiated Th2 cells. Unlike IL-6, IL-2 induced C-MAF expression in CD4 T cells with or without prior TCR stimulation. TCR-induced C-MAF expression was significantly inhibited by treatment with daclizumab or a JAK3 inhibitor, R333. Furthermore, IL-2 and IL-6 synergistically induced C-MAF expression in TCR-activated T cells, suggesting functional cooperation between these cytokines. Finally, both TCR-induced early IL4 mRNA expression and IL-4 cytokine expression in differentiated Th2 cells were significantly inhibited by IL-2R blockade. Thus, our findings demonstrate the importance of IL-2 in Th2 differentiation in human T cells and support the notion that IL-2R-directed therapies may have utility in the treatment of allergic disorders.


Asunto(s)
Diferenciación Celular/inmunología , Interleucina-2/metabolismo , Proteínas Proto-Oncogénicas c-maf/biosíntesis , Transducción de Señal/inmunología , Células Th2/metabolismo , Western Blotting , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Separación Celular , Inmunoprecipitación de Cromatina , Citometría de Flujo , Expresión Génica , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-2/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Células Th2/inmunología
19.
Exp Mol Med ; 41(5): 297-306, 2009 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-19307749

RESUMEN

Increased expression of a number of proinflammatory genes, including IL-8, is associated with inflammatory conditions such as asthma. Glucocorticoid receptor (GR)beta, one of the GR isoforms, has been suggested to be upregulated in asthma associated with glucocorticoid insensitivity and to work as a dominant negative inhibitor of wild type GRalpha. However, recent data suggest that GRbeta is not a dominant negative inhibitor of GRalpha in the transrepressive process and has its own functional role. We investigated the functional role of GRbeta expression in the suppressive effect of glucocorticoids on tumor necrosis factor (TNF)-alpha-induced IL-8 release in an airway epithelial cell line. GRbeta expression was induced by treatment of epithelial cells with either dexamethasone or TNF-alpha. GRbeta was able to inhibit glucocorticoid-induced transcriptional activation mediated by binding to glucocorticoid response elements (GREs). The suppressive effect of dexamethasone on TNF-alpha-induced IL-8 transcription was not affected by GRbeta overexpression, rather GRbeta had its own weak suppressive activity on TNF-alpha-induced IL-8 expression. Overall histone deacetylase activity and histone acetyltransferase activity were not changed by GRbeta overexpression, but TNF-alpha-induced histone H4 acetylation at the IL-8 promoter was decreased with GRbeta overexpression. This study suggests that GRbeta overexpression does not affect glucocorticoid-induced suppression of IL-8 expression in airway epithelial cells and GRbeta induces its own histone deacetylase activity around IL-8 promoter site.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Interleucina-8/genética , Receptores de Glucocorticoides/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Acetilación , Línea Celular Tumoral , Dexametasona/farmacología , Células Epiteliales/metabolismo , Humanos , Interleucina-8/metabolismo , Receptores de Glucocorticoides/genética , Activación Transcripcional , Transfección , Factor de Necrosis Tumoral alfa/farmacología
20.
J Allergy Clin Immunol ; 120(1): 56-63, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17507085

RESUMEN

BACKGROUND: Inflammation is a key feature of asthma and allergic disease. The proinflammatory cytokines IL-4, IL-5, and IL-13 are clustered on chromosome 5q with GM-CSF in close proximity, and each of these cytokines has been implicated in the pathogenesis of inflammatory disease. Although the expression of IL-4, IL-5, and IL-13 is coordinately regulated, the T(H)2-associated transcription factor c-Maf is thought to be involved only in the regulation of IL-4, the cytokine thought to be the main driver of T(H)2 differentiation. OBJECTIVE: We sought to determine whether c-Maf influenced the expression of proinflammatory cytokines other than IL-4 in the Jurkat human T-cell line. METHODS: RT-PCR, ELISA, and promoter-driven CAT assays were used to determine the effect of c-Maf overexpression on cytokine genes. A biotinylated oligo pulldown assay was used to demonstrate recruitment of c-Maf to the GM-CSF promoter. RESULTS: We found that in addition to induction of IL-4, c-Maf could upregulate GM-CSF expression at both mRNA and protein levels, and that c-Maf could strongly activate the promoters of GM-CSF and IL-4 but not IL-5. Recruitment of c-Maf to the -33 to -97 bp region of the GM-CSF promoter was demonstrated. CONCLUSION: We propose a novel role for c-Maf in the transcriptional regulation of GM-CSF in human T cells. CLINICAL IMPLICATIONS: These data suggest that c-Maf may be a therapeutic target affecting both IL-4 and GM-CSF.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Proteínas Proto-Oncogénicas c-maf/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Activación Transcripcional , Secuencia de Bases , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Humanos , Interleucina-4/biosíntesis , Interleucina-4/genética , Células Jurkat , Datos de Secuencia Molecular , ARN Mensajero/biosíntesis , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA