Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Thromb Haemost ; 21(8): 2089-2100, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37059301

RESUMEN

BACKGROUND: The von Willebrand factor (VWF) is a key player in regulating hemostasis through adhesion of platelets to sites of vascular injury. It is a large, multi-domain, mechano-sensitive protein that is stabilized by a net of disulfide bridges. Binding to platelet integrin is achieved by the VWF-C4 domain, which exhibits a fixed fold, even under conditions of severe mechanical stress, but only if critical internal disulfide bonds are closed. OBJECTIVE: To determine the oxidation state of disulfide bridges in the C4 domain of VWF and implications for VWF's platelet binding function. METHODS: We combined classical molecular dynamics and quantum mechanical simulations, mass spectrometry, site-directed mutagenesis, and platelet binding assays. RESULTS: We show that 2 disulfide bonds in the VWF-C4 domain, namely the 2 major force-bearing ones, are partially reduced in human blood. Reduction leads to pronounced conformational changes within C4 that considerably affect the accessibility of the integrin-binding motif, and thereby impair integrin-mediated platelet binding. We also reveal that reduced species in the C4 domain undergo specific thiol/disulfide exchanges with the remaining disulfide bridges, in a process in which mechanical force may increase the proximity of specific reactant cysteines, further trapping C4 in a state of low integrin-binding propensity. We identify a multitude of redox states in all 6 VWF-C domains, suggesting disulfide bond reduction and swapping to be a general theme. CONCLUSIONS: Our data suggests a mechanism in which disulfide bonds dynamically swap cysteine partners and control the interaction of VWF with integrin and potentially other partners, thereby critically influencing its hemostatic function.


Asunto(s)
Plaquetas , Factor de von Willebrand , Humanos , Plaquetas/metabolismo , Factor de von Willebrand/metabolismo , Dominios Proteicos , Unión Proteica , Cisteína/metabolismo , Disulfuros , Integrinas/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 49(12): 4037-4047, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35779082

RESUMEN

PURPOSE: This study assesses human biodistribution, radiation dosimetry, safety and tumour uptake of cell death indicator labelled with 68Ga ([68Ga]Ga-CDI), a novel radiopharmaceutical that can image multiple forms of cell death. METHODS: Five participants with at least one extracranial site of solid malignancy > 2 cm and no active cancer treatment in the 8 weeks prior to the study were enrolled. Participants were administered 205 ± 4.1 MBq (range, 200-211 MBq) of [68Ga]Ga-CDI and 8 serial PET scans acquired: the first commencing immediately and the last 3 h later. Participants were monitored for clinical, laboratory and electrocardiographic side effects and adverse events. Urine and blood radioactivity was measured. Spherical volumes of interest were drawn over tumour, blood pool and organs to determine biodistribution and calculate dosimetry. In one participant, tumour specimens were analysed for cell death using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. RESULTS: [68Ga]Ga-CDI is safe and well-tolerated with no side effects or adverse events. [68Ga]Ga-CDI is renally excreted, demonstrates low levels of physiologic uptake in the other organs and has excellent imaging characteristics. The mean effective dose was 2.17E - 02 ± 4.61E - 03 mSv/MBq. It images constitutive tumour cell death and correlates with tumour cell death on histology. CONCLUSION: [68Ga]Ga-CDI is a novel cell death imaging radiopharmaceutical that is safe, has low radiation dosimetry and excellent biodistribution and imaging characteristics. It has potential advantages over previously investigated radiopharmaceuticals for imaging of cell death and has progressed to a proof-of-concept trial. TRIAL REGISTRATION: ACTRN12621000641897 (28/5/2021, retrospectively registered).


Asunto(s)
Neoplasias , Radiofármacos , Muerte Celular , ADN Nucleotidilexotransferasa/metabolismo , Electrones , Radioisótopos de Galio , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/efectos adversos , Tomografía de Emisión de Positrones/métodos , Radiometría , Radiofármacos/efectos adversos , Distribución Tisular
3.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257879

RESUMEN

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Asunto(s)
Fibroblastos/citología , Gelatinasas/genética , Gelatinasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Adipoquinas/sangre , Adipoquinas/química , Aminoácido Oxidorreductasas/sangre , Aminoácido Oxidorreductasas/química , Animales , Técnicas de Cultivo de Célula , Línea Celular , Quimiocina CXCL5/sangre , Quimiocina CXCL5/química , Endopeptidasas , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Factor Estimulante de Colonias de Macrófagos/sangre , Factor Estimulante de Colonias de Macrófagos/química , Ratones , Mapas de Interacción de Proteínas , Proteolisis , Especificidad por Sustrato
4.
Aging Cell ; 14(1): 102-11, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25407919

RESUMEN

Senescent endothelial cells (EC) have been identified in cardiovascular disease, in angiogenic tumour associated vessels and in aged individuals. We have previously identified a novel anti-inflammatory senescent phenotype of EC. We show here that caveolae are critical in the induction of this anti-inflammatory senescent state. Senescent EC induced by either the overexpression of ARHGAP18/SENEX or by H2O2 showed significantly increased numbers of caveolae and associated proteins Caveolin-1, cavin-1 and cavin-2. Depletion of these proteins by RNA interference decreased senescence induced by ARHGAP18 and by H2O2. ARHGAP18 overexpression induced a predominantly anti-inflammatory senescent population and depletion of the caveolae-associated proteins resulted in the preferential reduction in this senescent population as measured by neutrophil adhesion and adhesion protein expression after TNFα treatment. In confirmation, EC isolated from the aortas of CAV-1(-/-) mice failed to induce this anti-inflammatory senescent cell population upon expression of ARHGAP18, whereas EC from wild-type mice showed a significant increase. NF-κB is one of the major transcription factors mediating the induction of E-selectin and VCAM-1 expression, adhesion molecules responsible for leucocyte attachment to EC. TNFα-induced activation of NF-κB was suppressed in ARHGAP18-induced senescent EC, and this inhibition was reversed by Caveolin-1 knock-down. Thus, out results demonstrate that an increase in caveolae and its component proteins in senescent ECs is associated with inhibition of the NF-kB signalling pathway and promotion of the anti-inflammatory senescent pathway.


Asunto(s)
Antiinflamatorios/metabolismo , Caveolas/metabolismo , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/patología , Animales , Proteínas Portadoras/metabolismo , Caveolina 1/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , FN-kappa B/metabolismo , Fenotipo , Proteínas de Unión a Fosfato , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba
5.
Small GTPases ; 5(3): 1-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25425145

RESUMEN

The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Uniones Intercelulares/metabolismo , Melanoma Experimental/irrigación sanguínea , Neovascularización Fisiológica , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular Tumoral , Células Endoteliales/metabolismo , Proteínas Activadoras de GTPasa/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Retina/citología , Retina/metabolismo , Retina/patología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Mol Endocrinol ; 28(11): 1899-915, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25216046

RESUMEN

Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor ß-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al Calcio , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Femenino , Humanos , Proteínas de Unión a TGF-beta Latente/metabolismo , Lisofosfolípidos/metabolismo , Células MCF-7 , Proteínas de Microfilamentos , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
J Biol Chem ; 289(5): 2992-3000, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24338014

RESUMEN

Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys(462)-Cys(541) disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys(541) thiolate anion on the Cys(536) sulfur atom of the Cys(512)-Cys(536) disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys(512)-Cys(536) allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys(462)-Cys(541) and Cys(512)-Cys(536) disulfides have -/+RHHook and -LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the -/+RHHook and -LHHook disulfides, along with the -RHStaple bond, are potential allosteric configurations.


Asunto(s)
Angiostatinas/metabolismo , Disulfuros/metabolismo , Fibrinolisina/metabolismo , Plasminógeno/metabolismo , Precursores de Proteínas/metabolismo , Regulación Alostérica , Angiostatinas/química , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Fibrinolisina/química , Humanos , Oxidación-Reducción , Plasminógeno/química , Precursores de Proteínas/química , Estructura Terciaria de Proteína , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo
8.
Blood ; 109(5): 1984-91, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17047151

RESUMEN

The anticoagulant, activated protein C (aPC), possesses antithrombotic, profibrinolytic, anti-inflammatory, and antiapoptotic properties, and the level of this protein is an important marker of acute inflammatory responses. Although infusion of aPC improves survival in a subset of patients with severe sepsis, evidence as to how aPC decreases mortality in these cases is limited. Because a total deficiency of PC shows complete neonatal lethality, no animal model currently exists to address the mechanistic relationships between very low endogenous aPC levels and inflammatory diseases. Here, we show for the first time that novel genetic dosing of PC strongly correlates with survival outcomes following endotoxin (LPS) challenge in mice. The data provide evidence that very low endogenous levels of PC predispose mice to early-onset disseminated intravascular coagulation, thrombocytopenia, hypotension, organ damage, and reduced survival after LPS challenge. Furthermore, evidence of an exacerbated inflammatory response is observed in very low PC mice but is greatly reduced in wild-type cohorts. Reconstitution of low-PC mice with recombinant human aPC improves hypotension and extends survival after LPS challenge. This study directly links host endogenous levels of PC with various coagulation, inflammation, and hemodynamic end points following a severe acute inflammatory challenge.


Asunto(s)
Deficiencia de Proteína C/sangre , Deficiencia de Proteína C/patología , Proteína C/metabolismo , Enfermedad Aguda , Animales , Coagulación Intravascular Diseminada/genética , Coagulación Intravascular Diseminada/metabolismo , Coagulación Intravascular Diseminada/patología , Predisposición Genética a la Enfermedad , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Transgénicos , Péptidos/metabolismo , Deficiencia de Proteína C/genética , Tasa de Supervivencia
9.
J Biol Chem ; 277(11): 9062-8, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11782484

RESUMEN

Phosphoglycerate kinase (PGK) is secreted by tumor cells and facilitates reduction of disulfide bond(s) in plasmin (Lay, A. J., Jiang, X.-M., Kisker, O., Flynn, E., Underwood, A., Condron, R., and Hogg, P. J. (2000) Nature 408, 869-873). The angiogenesis inhibitor, angiostatin, is cleaved from the reduced plasmin by a combination of serine- and metalloproteinases. The chemistry of protein reductants is typically mediated by a pair of closely spaced Cys residues. There are seven Cys in human PGK, and mutation of all seven to Ala did not appreciably affect plasmin reductase activity, although some of the mutations perturbed the tertiary structure of the protein. Cys-379 and Cys-380 are close to the hinge that links the N- and C-terminal domains of PGK. Alkylation/oxidation of Cys-379 and -380 by four different thiol-reactive compounds reduced plasmin reductase activity to 7--35% of control. Binding of 3-phosphoglycerate and/or MgATP to the N- and C-terminal domains of PGK, respectively, triggers a hinge bending conformational change in the enzyme. Incubation of PGK with 3-phosphoglycerate and/or MgATP ablated plasmin reductase activity, with half-maximal inhibitory effects at approximately 1 mm concentration. In summary, reduction of plasmin by PGK is a thiol-independent process, although either alkylation/oxidation of the fast-reacting Cys near the hinge or hinge bending conformational change in PGK perturbs plasmin reduction by PGK, perhaps by obstructing the interaction of plasmin with PGK or perturbing conformational changes in PGK required for plasmin reduction.


Asunto(s)
Fibrinolisina/metabolismo , Isoenzimas/metabolismo , Fosfoglicerato Quinasa/metabolismo , Compuestos de Sulfhidrilo/fisiología , Adenosina Trifosfato/farmacología , Alquilación , Ácidos Glicéricos/farmacología , Concentración de Iones de Hidrógeno , Concentración Osmolar , Oxidación-Reducción , Fosfoglicerato Quinasa/química , Conformación Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA