Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Lett ; 570: 216329, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37499741

RESUMEN

Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Estudios Retrospectivos , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Ácidos Grasos Insaturados/uso terapéutico , Ácidos Grasos/metabolismo
2.
J Control Release ; 333: 1-15, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33741385

RESUMEN

Various thermosensitive liposome (TSL) formulations have been described to date and it is currently unclear which are optimal for solid tumor treatment. Sufficient circulation half-life is important and most liposomes obtain this by polyethylene glycol (PEG) surface modification. 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) has been described as a promising alternative which increases TSL circulation half-life and facilitates rapid drug release under mild hyperthermia at 20-30 mol%. The present work describes an investigation of the DPPG2-TSL protein corona, blood cell interactions, complement activation in human plasma/blood and hypersensitivity reactions in rats. Furthermore, accelerated blood clearance (ABC) was investigated to obtain a complete assessment of DPPG2-TSL interactions with components of the blood and identify drivers for circulation half-life. A higher mol% DPPG2 increased Apolipoprotein E (ApoE) adsorption and decreased complement activation and granulocyte interaction in vitro. In contrast to PEG-TSL, DPPG2-TSL showed no ABC effect. In vivo hypersensitivity assessment by eicosanoid measurements, platelet and lymphocyte counting resembled the results of in vitro complement activation assays although here all DPPG2-TSL formulations induced hypersensitive responses upon i.v. administration. Prolonged circulation half-life of DPPG2-TSL may be ApoE-induced and the absent ABC effect demonstrates an advantage over PEG-TSL. Low complement activation in human plasma and blood for 20-30 mol% DPPG2-TSL presents a unique formulation attribute with the potential to strengthen clinical evaluation.


Asunto(s)
Hipertermia Inducida , Liposomas , Animales , Doxorrubicina , Semivida , Polietilenglicoles , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA