Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Genet ; 50(7): 979-989, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915428

RESUMEN

We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract. The analysis identified several master regulator proteins, including key regulators of neuroendocrine lineage progenitor state and immunoevasion, whose role as critical tumor dependencies was experimentally confirmed. Transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 107 compounds, identified the HDAC class I inhibitor entinostat as a potent inhibitor of master regulator activity for 42% of metastatic GEP-NET patients, abrogating tumor growth in vivo. This approach may thus complement current efforts in precision oncology.


Asunto(s)
Antineoplásicos/farmacología , Tumores Neuroendocrinos/tratamiento farmacológico , Benzamidas/farmacología , Línea Celular Tumoral , Estudios de Cohortes , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/genética , Tumores Neuroendocrinos/genética , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisión/métodos , Piridinas/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
2.
PLoS One ; 8(7): e69964, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922875

RESUMEN

Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.


Asunto(s)
Encéfalo/metabolismo , Cognición/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/farmacocinética , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Miedo/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/administración & dosificación , Concentración 50 Inhibidora , Isoenzimas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Membranas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Vorinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA