Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Rep Med ; 5(1): 101371, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232705

RESUMEN

Antibiotics and cystic fibrosis transmembrane conductance regulator (CFTR) modulators play a pivotal role in cystic fibrosis (CF) treatment, but both have limitations. Antibiotics are linked to antibiotic resistance and disruption of the airway microbiome, while CFTR modulators are not widely accessible, and structural lung damage and pathogen overgrowth still occur. Complementary strategies that can beneficially modulate the airway microbiome in a preventive way are highly needed. This could be mediated via oral probiotics, which have shown some improvement of lung function and reduction of airway infections and exacerbations, as a cost-effective approach. However, recent data suggest that specific and locally administered probiotics in the respiratory tract might be a more targeted approach to prevent pathogen outgrowth in the lower airways. This review aims to summarize the current knowledge on the CF airway microbiome and possibilities of microbiome treatments to prevent bacterial and/or viral infections and position them in the context of current CF therapies.


Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Fibrosis Quística/terapia , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pulmón , Antibacterianos/uso terapéutico
2.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136404

RESUMEN

Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.

3.
mBio ; 14(5): e0030023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37655878

RESUMEN

IMPORTANCE: The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.


Asunto(s)
Microbiota , Reproducción , Humanos , Femenino , Saliva , Parejas Sexuales , Estado de Salud , ARN Ribosómico 16S
4.
Microbiome ; 11(1): 86, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085819

RESUMEN

BACKGROUND AND AIMS: We aimed to identify mucin-microbiome signatures shaping the tumor microenvironment in gastric adenocarcinomas and clinical outcomes. METHODS: We performed high-throughput profiling of the mucin phenotypes present in 108 gastric adenocarcinomas and 20 functional dyspepsia cases using validated mucin-based RT-qPCRs with subsequent immunohistochemistry validation and correlated the data with clinical outcome parameters. The gastric microbiota was assessed by 16S rRNA gene sequencing, taxonomy, and community composition determined, microbial networks analyzed, and the metagenome inferred in association with mucin phenotypes and expression. RESULTS: Gastric adenocarcinomas with an intestinal mucin environment or high-level MUC13 expression are associated with poor survival. On the contrary, gastric MUC5AC or MUC6 abundance was associated with a more favorable outcome. The oral taxa Neisseria, Prevotella, and Veillonella had centralities in tumors with intestinal and mixed phenotypes and were associated with MUC13 overexpression, highlighting their role as potential drivers in MUC13 signaling in GC. Furthermore, dense bacterial networks were observed in intestinal and mixed mucin phenotype tumors whereas the lowest community complexity was shown in null mucin phenotype tumors due to higher Helicobacter abundance resulting in a more decreased diversity. Enrichment of oral or intestinal microbes was mucin phenotype dependent. More specifically, intestinal mucin phenotype tumors favored the establishment of pro-inflammatory oral taxa forming strong co-occurrence networks. CONCLUSIONS: Our results emphasize key roles for mucins in gastric cancer prognosis and shaping microbial networks in the tumor microenvironment. Specifically, the enriched oral taxa associated with aberrant MUC13 expression can be potential biomarkers in predicting disease outcomes. Video Abstract.


Asunto(s)
Adenocarcinoma , Microbiota , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Mucina 2/genética , Microambiente Tumoral , ARN Ribosómico 16S/genética , Mucina 6/genética , Fenotipo
5.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978820

RESUMEN

Pelvic irradiation-induced mucositis secondarily leads to dysbiosis, which seriously affects patients' quality of life after treatment. No safe and effective radioprotector or mitigator has yet been approved for clinical therapy. Here, we investigated the potential protective effects of fresh biomass of Limnospira indica PCC 8005 against ionizing irradiation-induced mucositis and dysbiosis in respect to benchmark probiotic Lacticaseibacillus rhamnosus GG ATCC 53103. For this, mice were supplemented daily before and after 12 Gy X-irradiation of the pelvis. Upon sacrifice, food supplements' efficacy was assessed for intestinal barrier protection, immunomodulation and changes in the microbiota composition. While both could not confer barrier protection or significant immunomodulatory effects, 16S microbial profiling revealed that L. indica PCC 8005 and L. rhamnosus GG could prevent pelvic irradiation-induced dysbiosis. Altogether, our data show that-besides benchmarked L. rhamnosus GG-L. indica PCC 8005 is an interesting candidate to further explore as a radiomitigator counteracting pelvic irradiation-induced dysbiosis in the presented in vivo irradiation-gut-microbiota platform.

7.
Allergy Asthma Immunol Res ; 13(4): 560-575, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34212544

RESUMEN

PURPOSE: A defective epithelial barrier has been demonstrated in chronic rhinosinusitis with nasal polyps (CRSwNP). Lactobacilli are shown to restore epithelial barrier defects in gastrointestinal disorders, but their effect on the airway epithelial barrier is unknown. In this study, hence, we evaluated whether the nasopharyngeal isolates Lacticaseibacillus casei AMBR2 and Latilactobacillus sakei AMBR8 could restore nasal epithelial barrier integrity in CRSwNP. METHODS: Ex vivo trans-epithelial tissue resistance and fluorescein isothiocyanate-dextran 4 kDa (FD4) permeability of nasal mucosal explants were measured. The relative abundance of lactobacilli in the maxillary sinus of CRSwNP patients was analyzed by amplicon sequencing of the V4 region of the 16S rRNA gene. The effect of spray-dried L. casei AMBR2 and L. sakei AMBR8 on epithelial integrity was investigated in vitro in primary nasal epithelial cells (pNECs) from healthy controls and patients with CRSwNP as well as in vivo in a murine model of interleukin (IL)-4 induced barrier dysfunction. The activation of Toll-like receptor 2 (TLR2) was explored in vitro by using polyclonal antibodies. RESULTS: Patients with CRSwNP had a defective epithelial barrier which positively correlated with the relative abundance of lactobacilli-specific amplicons in the maxillary sinus. L. casei AMBR2, but not L. sakei AMBR8, increased the trans-epithelial electrical resistance (TEER) of pNECs from CRSwNP patients in a time-dependent manner. Treatment of epithelial cells with L. casei AMBR2 promoted the tight junction proteins occludin and zonula occludens-1 reorganization. Furthermore, L. casei AMBR2 prevented IL-4-induced nasal permeability in vivo and in vitro. Finally, the beneficial effect of L. casei AMBR2 on nasal epithelial cells in vitro was TLR2-dependent as blocking TLR2 receptors prevented the increase in TEER. CONCLUSIONS: A defective epithelial barrier in CRSwNP may be associated with a decrease in relative abundance of lactobacilli-specific amplicons. L. casei AMBR2 would restore nasal epithelial integrity and can be a novel therapeutic strategy for CRSwNP.

8.
Food Funct ; 12(1): 417-425, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33336676

RESUMEN

SCOPE: Chlorogenic acid (5-caffeoylquinic acid), the most prominent polyphenolic compound in coffee, has been attributed multiple health-promoting effects such as anti-inflammatory, antidiabetic and antioxidative effects. These effects are dependent on the bioavailability of chlorogenic acid, which is determined by the pharmacokinetic properties: absorption, distribution, metabolism and excretion (ADME). In order to have a better understanding of the biological properties of chlorogenic acid and to optimize formulation and dosing of chlorogenic acid-containing food supplements, information on the absorption of chlorogenic acid and its microbial biotransformation products is of essence. METHODS AND RESULTS: In the present work, the intestinal absorption of chlorogenic acid and quinic acid, one of its most prominent intestinal biotransformation products, was studied by an in vitro permeability assay using a human Caco-2 cell line model. For both chlorogenic acid and quinic acid, the involvement of an active efflux mechanism was demonstrated, suggesting an overall low intestinal absorption. CONCLUSIONS: An overall low intestinal absorption for chlorogenic acid and quinic acid was reported given the involvement of an active efflux mechanism. These findings could aid in the development of optimal formulation and dosing strategies of chlorogenic acid in food supplements in order to obtain beneficial health effects.


Asunto(s)
Ácido Clorogénico/metabolismo , Absorción Intestinal/fisiología , Ácido Quínico/metabolismo , Células CACO-2 , Humanos , Técnicas In Vitro
9.
ISME Commun ; 1(1): 24, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36737646

RESUMEN

Pelvic radiotherapy is known to evoke intestinal mucositis and dysbiosis. Currently, there are no effective therapies available to mitigate these injuries, which is partly due to a lack of insight into the events causing mucositis and dysbiosis. Here, the complex interplay between the murine host and its microbiome following pelvic irradiation was mapped by characterizing intestinal mucositis along with extensive 16S microbial profiling. We demonstrated important morphological and inflammatory implications within one day after exposure, thereby impairing intestinal functionality and inducing translocation of intraluminal bacteria into mesenteric lymph nodes as innovatively quantified by flow cytometry. Concurrent 16S microbial profiling revealed a delayed impact of pelvic irradiation on beta diversity. Analysis of composition of microbiomes identified biomarkers for pelvic irradiation. Among them, members of the families Ruminococcaceae, Lachnospiraceae and Porphyromonadaceae were differentially affected. Altogether, our unprecedented findings showed how pelvic irradiation evoked structural and functional changes in the intestine, which secondarily resulted in a microbiome shift. Therefore, the presented in vivo irradiation-gut-microbiome platform allows further research into the pathobiology of pelvic irradiation-induced intestinal mucositis and resultant dysbiosis, as well as the exploration of mitigating treatments including drugs and food supplements.

10.
Eur J Pharm Biopharm ; 159: 211-220, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33238191

RESUMEN

The upper respiratory tract (URT) is the main entrance point for many viral and bacterial pathogens, and URT infections are among the most common infections in the world. Recent evidences by our own group and others imply the importance of lactobacilli as gatekeepers of a healthy URT. However, the benefits of putting health-promoting microbes or potential probiotics, such as these URT lactobacilli, in function of URT disease control and prevention is underestimated, among others because of the absence of adequate formulation modalities. Therefore, this study entails important aspects in probiotic nasal spray development with a novel URT-derived probiotic strain by spray drying. We report quantitative and qualitative analysis of several spray-dried formulations, i.e. powders for reconstitution, based on disaccharide or sugar alcohol combinations with a polymer, including their long-term stability. Four formulations with the highest survival of >109 (Colony Forming Units) CFU/g after 28 weeks were further examined upon reconstitution which confirmed sufficiency of one bottle/dosage form during 7 days and rheological properties of shear-thinning. Tests also demonstrated maintained viability and cell morphology overall upon spraying through a nasal spray bottle in all 4 formulations. Lastly, application suitability in terms of high adherence to Calu-3 cells and antimicrobial activity against common URT pathogens was demonstrated and was not impacted neither by powder production process nor by spraying of reconstituted powder through a nasal spray device.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos/administración & dosificación , Infecciones del Sistema Respiratorio/dietoterapia , Secado por Pulverización , Administración Intranasal , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Rociadores Nasales , Polvos , Infecciones del Sistema Respiratorio/microbiología
11.
Clin Exp Allergy ; 51(1): 87-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33090566

RESUMEN

BACKGROUND: Staphylococcus aureus colonization and release of enterotoxin B (SEB) has been associated with severe chronic rhinosinusitis with nasal polyps (CRSwNP). The pathogenic mechanism of SEB on epithelial barriers, however, is largely unexplored. OBJECTIVE: We investigated the effect of SEB on nasal epithelial barrier function. METHODS: SEB was apically administered to air-liquid interface (ALI) cultures of primary polyp and nasal epithelial cells of CRSwNP patients and healthy controls, respectively. Epithelial cell integrity and tight junction expression were evaluated. The involvement of Toll-like receptor 2 (TLR2) activation was studied in vitro with TLR2 monoclonal antibodies and in vivo in tlr2-/- knockout mice. RESULTS: SEB applied to ALI cultures of polyp epithelial cells decreased epithelial cell integrity by diminishing occludin and zonula occludens (ZO)-1 protein expression. Antagonizing TLR2 prevented SEB-induced barrier disruption. SEB applied in the nose of control mice increased mucosal permeability and decreased mRNA expression of occludin and ZO-1, whereas mucosal integrity and tight junction expression remained unaltered in tlr2-/- mice. Furthermore, in vitro SEB stimulation resulted in epithelial production of IL-6 and IL-8, which was prevented by TLR2 antagonization. CONCLUSION & CLINICAL RELEVANCE: SEB damages nasal polyp epithelial cell integrity by triggering TLR2 in CRSwNP. Our results suggest that SEB might represent a driving factor of disease exacerbation, rather than a causal factor for epithelial defects in CRSwNP. Interfering with TLR2 triggering might provide a way to avoid the pathophysiological consequences of S. aureus on inflammation in CRSwNP.


Asunto(s)
Enterotoxinas/farmacología , Mucosa Nasal/efectos de los fármacos , Pólipos Nasales/metabolismo , Permeabilidad/efectos de los fármacos , Rinitis/metabolismo , Sinusitis/metabolismo , Uniones Estrechas/efectos de los fármacos , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Femenino , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Ocludina/efectos de los fármacos , Ocludina/genética , Cultivo Primario de Células , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Staphylococcus aureus/patogenicidad , Uniones Estrechas/genética , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/genética , Adulto Joven , Proteína de la Zonula Occludens-1/efectos de los fármacos , Proteína de la Zonula Occludens-1/genética
12.
Sci Rep ; 10(1): 16939, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037304

RESUMEN

Live biotherapeutic products (LBP) are emerging as alternative treatment strategies for chronic rhinosinusitis. The selection of interesting candidate LBPs often involves model systems that do not include the polymicrobial background (i.e. the host microbiota) in which they will be introduced. Here, we performed a screening in a simplified model system of upper respiratory epithelium to assess the effect of nasal microbiota composition on the ability to attach and grow of a potential LBP, Lacticaseibacillus casei AMBR2, in this polymicrobial background. After selecting the most permissive and least permissive donor, L. casei AMBR2 colonisation in their respective polymicrobial backgrounds was assessed in more physiologically relevant model systems. We examined cytotoxicity, epithelial barrier function, and cytokine secretion, as well as bacterial cell density and phenotypic diversity in differentiated airway epithelium based models, with or without macrophage-like cells. L. casei AMBR2 could colonize in the presence of both selected donor microbiota and increased epithelial barrier resistance in presence of donor-derived nasal bacteria, as well as anti-inflammatory cytokine secretion in the presence of macrophage-like cells. This study highlights the potential of L. casei AMBR2 as LBP and the necessity to employ physiologically relevant model systems to investigate host-microbe interaction in LBP research.


Asunto(s)
Lacticaseibacillus casei/inmunología , Microbiota/inmunología , Nariz/microbiología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Células Cultivadas , Citocinas/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Epitelio , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad/inmunología , Inflamación/inmunología , Inflamación/microbiología , Macrófagos/inmunología , Nariz/inmunología
13.
Int J Syst Evol Microbiol ; 70(4): 2782-2858, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32293557

RESUMEN

The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).


Asunto(s)
Lactobacillaceae/clasificación , Lactobacillus/clasificación , Leuconostocaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN
14.
Probiotics Antimicrob Proteins ; 12(4): 1398-1408, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31970649

RESUMEN

Probiotics form a promising strategy to maintain intestinal health. Milks fermented with probiotic strains, such as the Lactobacillus paracasei ST11, are largely commercialized in Brazil and form a low-cost alternative to probiotic pharmaceutical formulations. In this study, we assessed the probiotic effects of milk fermented by L. paracasei ST11 (administered through fermented milk) in a Salmonella typhimurium infection model in BALB/c mice. We observed in this murine model that the applied probiotic conferred protective effects against S. typhimurium infection, since its administration reduced mortality, weight loss, translocation to target organs (liver and spleen) and ileum injury. Moreover, a reduction in the mRNA expression of pro-inflammatory cytokines such as IFN-γ, IL-6, TNF-α and IL-17 in animals that received the probiotic before challenge was observed. Additionally, the ileum microbiota was better preserved in these animals. The present study highlights a multifactorial protective aspect of this commercial probiotic strain against a common gastrointestinal pathogen.


Asunto(s)
Productos Lácteos Cultivados , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Lacticaseibacillus paracasei/fisiología , Probióticos/farmacología , Infecciones por Salmonella/prevención & control , Animales , Peso Corporal/efectos de los fármacos , Dieta , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica/inmunología , Íleon/efectos de los fármacos , Íleon/inmunología , Íleon/microbiología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/mortalidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/microbiología , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
mSphere ; 5(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941815

RESUMEN

The epithelium of the human sinonasal cavities is colonized by a diverse microbial community, modulating epithelial development and immune priming and playing a role in respiratory disease. Here, we present a novel in vitro approach enabling a 3-day coculture of differentiated Calu-3 respiratory epithelial cells with a donor-derived bacterial community, a commensal species (Lactobacillus sakei), or a pathobiont (Staphylococcus aureus). We also assessed how the incorporation of macrophage-like cells could have a steering effect on both epithelial cells and the microbial community. Inoculation of donor-derived microbiota in our experimental setup did not pose cytotoxic stress on the epithelial cell layers, as demonstrated by unaltered cytokine and lactate dehydrogenase release compared to a sterile control. Epithelial integrity of the differentiated Calu-3 cells was maintained as well, with no differences in transepithelial electrical resistance observed between coculture with donor-derived microbiota and a sterile control. Transition of nasal microbiota from in vivo to in vitro conditions maintained phylogenetic richness, and yet a decrease in phylogenetic and phenotypic diversity was noted. Additional inclusion and coculture of THP-1-derived macrophages did not alter phylogenetic diversity, and yet donor-independent shifts toward higher Moraxella and Mycoplasma abundance were observed, while phenotypic diversity was also increased. Our results demonstrate that coculture of differentiated airway epithelial cells with a healthy donor-derived nasal community is a viable strategy to mimic host-microbe interactions in the human upper respiratory tract. Importantly, including an immune component allowed us to study host-microbe interactions in the upper respiratory tract more in depth.IMPORTANCE Despite the relevance of the resident microbiota in sinonasal health and disease and the need for cross talk between immune and epithelial cells in the upper respiratory tract, these parameters have not been combined in a single in vitro model system. We have developed a coculture system of differentiated respiratory epithelium and natural nasal microbiota and incorporated an immune component. As indicated by absence of cytotoxicity and stable cytokine profiles and epithelial integrity, nasal microbiota from human origin appeared to be well tolerated by host cells, while microbial community composition remained representative for that of the human (sino)nasal cavity. Importantly, the introduction of macrophage-like cells enabled us to obtain a differential readout from the epithelial cells dependent on the donor microbial background to which the cells were exposed. We conclude that both model systems offer the means to investigate host-microbe interactions in the upper respiratory tract in a more representative way.


Asunto(s)
Interacciones Microbiota-Huesped , Macrófagos/microbiología , Microbiota , Cavidad Nasal/microbiología , Mucosa Respiratoria/microbiología , Técnicas de Cocultivo , Citocinas/inmunología , Humanos , Latilactobacillus sakei/inmunología , Latilactobacillus sakei/fisiología , Cavidad Nasal/citología , Filogenia , ARN Ribosómico 16S/genética , Mucosa Respiratoria/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Células THP-1
16.
mSphere ; 4(6)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776238

RESUMEN

It is generally believed that the microbiome plays a role in the pathophysiology of chronic rhinosinusitis (CRS), though its exact contribution to disease development and severity remains unclear. Here, samples were collected from the anterior nares, nasopharynx, and maxillary and ethmoid sinuses of 190 CRS patients and from the anterior nares and nasopharynx of 100 controls. Microbial communities were analyzed by Illumina sequencing of the V4 region of 16S rRNA. The phenotype and patient characteristics were documented, and several serum inflammatory markers were measured. Our data indicate a rather strong continuity for the microbiome in the different upper respiratory tract (URT) niches in CRS patients, with the microbiome in the anterior nares being most similar to the sinus microbiome. Bacterial diversity was reduced in CRS patients without nasal polyps compared to that in the controls but not in CRS patients with nasal polyps. Statistically significant differences in the presence/absence or relative abundance of several taxa were found between the CRS patients and the healthy controls. Of these, Dolosigranulum pigrum was clearly more associated with URT samples from healthy subjects, while the Corynebacterium tuberculostearicum, Haemophilus influenzae/H. aegyptius, and Staphylococcus taxa were found to be potential pathobionts in CRS patients. However, CRS versus health as a predictor explained only 1 to 2% of the variance in the microbiome profiles in an adonis model. A history of functional endoscopic sinus surgery, age, and sex also showed a minor association. This study thus indicates that functional studies on the potential beneficial versus pathogenic activity of the different indicator taxa found here are needed to further understand the pathology of CRS and its different phenotypes. (This study has been registered at ClinicalTrials.gov under identifier NCT02933983.)IMPORTANCE There is a clear need to better understand the pathology and specific microbiome features in chronic rhinosinusitis patients, but little is known about the bacterial topography and continuity between the different niches of the upper respiratory tract. Our work showed that the anterior nares could be an important reservoir for potential sinus pathobionts. This has implications for the diagnosis, prevention, and treatment of CRS. In addition, we found a potential pathogenic role for the Corynebacterium tuberculostearicum, Haemophilus influenzae/H. aegyptius, and Staphylococcus taxa and a potential beneficial role for Dolosigranulum Finally, a decreased microbiome diversity was observed in patients with chronic rhinosinusitis without nasal polyps compared to that in healthy controls but not in chronic rhinosinusitis patients with nasal polyps. This suggests a potential role for the microbiome in disease development or progression of mainly this phenotype.


Asunto(s)
Microbiota , Nariz/microbiología , Sinusitis/microbiología , Sinusitis/fisiopatología , Adulto , Enfermedad Crónica , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/microbiología , Senos Paranasales/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Adulto Joven
17.
Microb Biotechnol ; 12(5): 849-855, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31225698

RESUMEN

The preservation of the viability of microorganisms in probiotic formulations is the most important parameter ensuring the adequate concentration of live microorganisms at the time of administration. The formulation and processing techniques used to produce these probiotic formulations can influence the preservation of the microbial viability. However, it is also required that the bacteria maintain their key probiotic capacities during processing, formulation and shelf life. In this study, we investigated the impact of spray-drying on different cell wall properties of the model probiotic strain Lactobacillus rhamnosus GG, including its adherence to intestinal epithelial cells. The dltD gene knock-out mutant, L. rhamnosus GG CMPG5540, displaying modified cell wall lipoteichoic acids, showed significantly increased colony-forming units after spray-drying and subsequent storage under standard conditions compared to wild-type L. rhamnosus GG. In contrast, disruption of the biosynthesis of exopolysaccharides or pili expression did not impact survival. However, spray-drying did significantly affect the adherence capacity of L. rhamnosus GG. Scanning electron microscopy confirmed that the pili, key surface factors for adherence to intestinal cells and mucus, were sheared off during the spray-drying process. These data thus highlight that both the functionality and viability of probiotics should be assessed during the spray-drying process and subsequent storage.


Asunto(s)
Deshidratación , Desecación/métodos , Lacticaseibacillus rhamnosus/fisiología , Viabilidad Microbiana , Preservación Biológica/métodos , Adhesión Bacteriana , Recuento de Colonia Microbiana , Células Epiteliales/microbiología , Probióticos
18.
Microorganisms ; 7(4)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987157

RESUMEN

Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.

19.
Microb Biotechnol ; 11(2): 317-331, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29027368

RESUMEN

Probiotic Lactobacillus strains are widely used to benefit human and animal health, although the exact mechanisms behind their interactions with the host and the microbiota are largely unknown. Fluorescent tagging of live probiotic cells is an important tool to unravel their modes of action. In this study, the implementation of different heterologously expressed fluorescent proteins for the labelling of the model probiotic strains Lactobacillus rhamnosusGG (gastrointestinal) and Lactobacillus rhamnosusGR-1 (vaginal) was explored. Heterologous expression of mTagBFP2 and mCherry resulted in long-lasting fluorescence of L. rhamnosusGG and GR-1 cells, using the nisin-controlled expression (NICE) system. These novel fluorescent strains were then used to study in vitro aspects of their microbe-microbe and microbe-host interactions. Lactobacillus rhamnosusGG and L. rhamnosusGR-1 expressing mTagBFP2 and mCherry could be visualized in mixed-species biofilms, where they inhibited biofilm formation by Salmonella Typhimurium-gfpmut3 expressing the green fluorescent protein. Likewise, fluorescent L. rhamnosusGG and L. rhamnosusGR-1 were implemented for the visualization of their adhesion patterns to intestinal epithelial cell cultures. The fluorescent L. rhamnosus strains developed in this study can therefore serve as novel tools for the study of probiotic interactions with their environment.


Asunto(s)
Expresión Génica , Lacticaseibacillus rhamnosus/metabolismo , Proteínas Luminiscentes/biosíntesis , Interacciones Microbianas , Coloración y Etiquetado/métodos , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Células CACO-2 , Células Epiteliales/microbiología , Genes Reporteros , Humanos , Lacticaseibacillus rhamnosus/genética , Proteínas Luminiscentes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Salmonella typhimurium/crecimiento & desarrollo
20.
Front Microbiol ; 8: 2372, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238339

RESUMEN

To improve our understanding of upper respiratory tract (URT) diseases and the underlying microbial pathogenesis, a better characterization of the healthy URT microbiome is crucial. In this first large-scale study, we obtained more insight in the URT microbiome of healthy adults. Hereto, we collected paired nasal and nasopharyngeal swabs from 100 healthy participants in a citizen-science project. High-throughput 16S rRNA gene V4 amplicon sequencing was performed and samples were processed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) algorithm. This allowed us to identify the bacterial richness and diversity of the samples in terms of amplicon sequence variants (ASVs), with special attention to intragenus variation. We found both niches to have a low overall species richness and uneven distribution. Moreover, based on hierarchical clustering, nasopharyngeal samples could be grouped into some bacterial community types at genus level, of which four were supported to some extent by prediction strength evaluation: one intermixed type with a higher bacterial diversity where Staphylococcus, Corynebacterium, and Dolosigranulum appeared main bacterial members in different relative abundances, and three types dominated by either Moraxella, Streptococcus, or Fusobacterium. Some of these bacterial community types such as Streptococcus and Fusobacterium were nasopharynx-specific and never occurred in the nose. No clear association between the nasopharyngeal bacterial profiles at genus level and the variables age, gender, blood type, season of sampling, or common respiratory allergies was found in this study population, except for smoking showing a positive association with Corynebacterium and Staphylococcus. Based on the fine-scale resolution of the ASVs, both known commensal and potential pathogenic bacteria were found within several genera - particularly in Streptococcus and Moraxella - in our healthy study population. Of interest, the nasopharynx hosted more potential pathogenic species than the nose. To our knowledge, this is the first large-scale study using the DADA2 algorithm to investigate the microbiota in the "healthy" adult nose and nasopharynx. These results contribute to a better understanding of the composition and diversity of the healthy microbiome in the URT and the differences between these important URT niches. Trial Registration: Ethical Committee of Antwerp University Hospital, B300201524257, registered 23 March 2015, ClinicalTrials.gov Identifier: NCT02 933983.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA