Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 14: 1177245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287975

RESUMEN

With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.


Asunto(s)
Varicela , Herpes Zóster , Células Madre Pluripotentes Inducidas , Infección por el Virus de la Varicela-Zóster , Humanos , Herpesvirus Humano 3 , Técnicas de Cocultivo , Replicación Viral/fisiología , Neuronas , Macrófagos , Interferones , Antivirales , Inmunidad Innata
2.
Mol Ther Oncolytics ; 26: 35-48, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35784400

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, which remains difficult to cure. The very high recurrence rate has been partly attributed to the presence of GBM stem-like cells (GSCs) within the tumors, which have been associated with elevated chemokine receptor 4 (CXCR4) expression. CXCR4 is frequently overexpressed in cancer tissues, including GBM, and usually correlates with a poor prognosis. We have created a CXCR4-retargeted oncolytic herpesvirus (oHSV) by insertion of an anti-human CXCR4 nanobody in glycoprotein D of an attenuated HSV-1 (ΔICP34.5, ΔICP6, and ΔICP47), thereby describing a proof of principle for the use of nanobodies to target oHSVs toward specific cellular entities. Moreover, this virus has been armed with a transgene expressing a soluble form of TRAIL to trigger apoptosis. In vitro, this oHSV infects U87MG CXCR4+ and patient-derived GSCs in a CXCR4-dependent manner and, when armed, triggers apoptosis. In a U87MG CXCR4+ orthotopic xenograft mouse model, this oHSV slows down tumor growth and significantly improves mice survival. Customizing oHSVs with diverse nanobodies for targeting multiple proteins appears as an interesting approach for tackling the heterogeneity of GBM, especially GSCs. Altogether, our study must be considered as a proof of principle and a first step toward personalized GBM virotherapies to complement current treatments.

3.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29793951

RESUMEN

ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the µ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Herpesvirus Humano 3/metabolismo , Proteínas Virales/metabolismo , Red trans-Golgi/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Línea Celular Tumoral , Vesículas Cubiertas por Clatrina/genética , Vesículas Cubiertas por Clatrina/virología , Herpesvirus Humano 3/genética , Humanos , Mutación Missense , Proteínas Virales/genética , Red trans-Golgi/genética , Red trans-Golgi/virología
4.
Nat Struct Mol Biol ; 23(7): 663-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273514

RESUMEN

Control of mRNA levels, a fundamental aspect in the regulation of gene expression, is achieved through a balance between mRNA synthesis and decay. E26-related gene (Erg) proteins are canonical transcription factors whose previously described functions are confined to the control of mRNA synthesis. Here, we report that ERG also regulates gene expression by affecting mRNA stability and identify the molecular mechanisms underlying this function in human cells. ERG is recruited to mRNAs via interaction with the RNA-binding protein RBPMS, and it promotes mRNA decay by binding CNOT2, a component of the CCR4-NOT deadenylation complex. Transcriptome-wide mRNA stability analysis revealed that ERG controls the degradation of a subset of mRNAs highly connected to Aurora signaling, whose decay during S phase is necessary for mitotic progression. Our data indicate that control of gene expression by mammalian transcription factors may follow a more complex scheme than previously anticipated, integrating mRNA synthesis and degradation.


Asunto(s)
Mitosis , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Línea Celular Tumoral , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
5.
J Virol ; 87(5): 2868-81, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269791

RESUMEN

The role of the tegument during the herpesvirus lytic cycle is still not clearly established, particularly at the late phase of infection, when the newly produced viral particles need to be fully assembled before being released from the infected cell. The varicella-zoster virus (VZV) protein coded by open reading frame (ORF) 9 (ORF9p) is an essential tegument protein, and, even though its mRNA is the most expressed during the productive infection, little is known about its functions. Using a GalK positive/negative selection technique, we modified a bacterial artificial chromosome (BAC) containing the complete VZV genome to create viruses expressing mutant versions of ORF9p. We showed that ORF9p is hyperphosphorylated during the infection, especially through its interaction with the viral Ser/Thr kinase ORF47p; we identified a consensus site within ORF9p recognized by ORF47p and demonstrated its importance for ORF9p phosphorylation. Strikingly, an ultrastructural analysis revealed that the mutation of this consensus site (glutamate 85 to arginine) strongly affects viral assembly and release, reproducing the ORF47 kinase-dead VZV phenotype. It also slightly diminishes the infectivity toward immature dendritic cells. Taken together, our results identify ORF9p as a new viral substrate of ORF47p and suggest a determinant role of this phosphorylation for viral infectivity, especially during the process of viral particle formation and egress.


Asunto(s)
Herpesvirus Humano 3/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus , Línea Celular Tumoral , Cromosomas Artificiales Bacterianos , Células Dendríticas/inmunología , Células HEK293 , Herpesvirus Humano 3/fisiología , Herpesvirus Humano 3/ultraestructura , Humanos , Mutación , Sistemas de Lectura Abierta , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Virión/fisiología , Virión/ultraestructura , Ensamble de Virus , Replicación Viral
6.
PLoS One ; 7(7): e41005, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815893

RESUMEN

SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.


Asunto(s)
FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Células Epiteliales/citología , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico , Inflamación , Inositol Polifosfato 5-Fosfatasas , Macrófagos/citología , Macrófagos/metabolismo , Modelos Biológicos , Monocitos/citología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Estructura Terciaria de Proteína , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 104(11): 4577-82, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17360566

RESUMEN

Hec-6st is a highly specific high endothelial venule (HEV) gene that is crucial for regulating lymphocyte homing to lymph nodes (LN). The enzyme is also expressed in HEV-like vessels in tertiary lymphoid organs that form in chronic inflammation in autoimmunity, graft rejection, and microbial infection. Understanding the molecular nature of Hec-6st regulation is crucial for elucidating its function in development and disease. However, studies of HEV are limited because of the difficulties in isolating and maintaining the unique characteristics of these vessels in vitro. The novel pClasper yeast homologous recombination technique was used to isolate from a BAC clone a 60-kb DNA fragment that included the Hec-6st (Chst4) gene with flanking sequences. Transgenic mice were generated with the beta-galactosidase (LacZ) reporter gene inserted in-frame in the exon II of Hec-6st within the isolated BAC DNA fragment. LacZ was expressed specifically on HEV in LN, as indicated by its colocalization with peripheral node vascular addressin. LacZ was increased in nasal-associated lymphoid tissue during development and was reduced in LN and nasal-associated lymphoid tissue by LTbetaR-Ig (lymphotoxin-beta receptor human Ig fusion protein) treatment in a manner identical to the endogenous gene. The transgene was expressed at high levels in lymphoid accumulations with characteristics of tertiary lymphoid organs in the salivary glands of aged mice. Thus, the Hec-6s-LacZ construct faithfully reproduces Hec-6st tissue-specific expression and can be used in further studies to drive expression of reporter or effector genes, which could visualize or inhibit HEV in autoimmunity.


Asunto(s)
Endotelio Linfático/citología , Regulación de la Expresión Génica , Operón Lac , Sulfotransferasas/genética , Transgenes , Animales , Endotelio Linfático/metabolismo , Endotelio Linfático/patología , Genes Reporteros , Inflamación , Ganglios Linfáticos/patología , Linfotoxina-alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Vénulas/metabolismo , beta-Galactosidasa/metabolismo , Carbohidrato Sulfotransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA