Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanoscale ; 16(21): 10230-10238, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629471

RESUMEN

The utilization of Microelectromechanical Systems (MEMS) technology holds great significance for developing compact and high-performance humidity sensors in human healthcare, and the Internet of Things. However, several drawbacks of the current MEMS humidity sensors limit their applications, including their long response time, low sensitivity, relatively large sensing area, and incompatibility with a complementary metal-oxide-semiconductor (CMOS) process. To address these problems, a suspended aluminum scandium nitride (AlScN) Lamb wave humidity sensor utilizing a graphene oxide (GO) layer is firstly designed and fabricated. The theoretical and experimental results both show that the AlScN Lamb wave humidity sensor exhibits high sensing performance. The mass loading sensitivity of the sensor is one order higher than that of the normal surface acoustic wave (SAW) humidity sensor based on an aluminum nitride (AlN) film; thus the AlScN Lamb wave humidity sensor achieves high sensitivity (∼41.2 ppm per % RH) with only an 80 nm-thick GO film. In particular, the as-prepared suspended AlScN Lamb wave sensors are able to respond to the wide relative humidity (0-80% RH) change in 2 s, and the device size is ultra-compact (260 µm × 72 µm). Moreover, the sensor has an excellent linear response in the 0-80% RH range, great repeatability and long-term stability. Therefore, this work brings opportunities for the development of ultra-compact and high-performance humidity sensors.

2.
Nat Commun ; 14(1): 2524, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130843

RESUMEN

Isopropyl alcohol molecules, as a biomarker for anti-virus diagnosis, play a significant role in the area of environmental safety and healthcare relating volatile organic compounds. However, conventional gas molecule detection exhibits dramatic drawbacks, like the strict working conditions of ion mobility methodology and weak light-matter interaction of mid-infrared spectroscopy, yielding limited response of targeted molecules. We propose a synergistic methodology of artificial intelligence-enhanced ion mobility and mid-infrared spectroscopy, leveraging the complementary features from the sensing signal in different dimensions to reach superior accuracy for isopropyl alcohol identification. We pull in "cold" plasma discharge from triboelectric generator which improves the mid-infrared spectroscopic response of isopropyl alcohol with good regression prediction. Moreover, this synergistic methodology achieves ~99.08% accuracy for a precise gas concentration prediction, even with interferences of different carbon-based gases. The synergistic methodology of artificial intelligence-enhanced system creates mechanism of accurate gas sensing for mixture and regression prediction in healthcare.

3.
Nanomicro Lett ; 14(1): 207, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271989

RESUMEN

Metal-organic frameworks (MOFs) have been extensively used for gas sorption, storage and separation owing to ultrahigh porosity, exceptional thermal stability, and wide structural diversity. However, when it comes to ultra-low concentration gas detection, technical bottlenecks of MOFs appear due to the poor adsorption capacity at ppm-/ppb-level concentration and the limited sensitivity for signal transduction. Here, we present hybrid MOF-polymer physi-chemisorption mechanisms integrated with infrared (IR) nanoantennas for highly selective and ultrasensitive CO2 detection. To improve the adsorption capacity for trace amounts of gas molecules, MOFs are decorated with amino groups to introduce the chemisorption while maintaining the structural integrity for physisorption. Additionally, leveraging all major optimization methods, a multi-hotspot strategy is proposed to improve the sensitivity of nanoantennas by enhancing the near field and engineering the radiative and absorptive loss. As a benefit, we demonstrate the competitive advantages of our strategy against the state-of-the-art miniaturized IR CO2 sensors, including low detection limit, high sensitivity (0.18%/ppm), excellent reversibility (variation within 2%), and high selectivity (against C2H5OH, CH3OH, N2). This work provides valuable insights into the integration of advanced porous materials and nanophotonic devices, which can be further adopted in ultra-low concentration gas monitoring in industry and environmental applications.

4.
Nano Lett ; 22(15): 6112-6120, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35759415

RESUMEN

Nanophotonic waveguides that implement long optical pathlengths on chips are promising to enable chip-scale gas sensors. Nevertheless, current absorption-based waveguide sensors suffer from weak interactions with analytes, limiting their adoptions in most demanding applications such as exhaled breath analysis and trace-gas monitoring. Here, we propose an all-dielectric metamaterial-assisted comb (ADMAC) waveguide to greatly boost the sensing capability. By leveraging large longitudinal electric field discontinuity at periodic high-index-contrast interfaces in the subwavelength grating metamaterial and its unique features in refractive index engineering, the ADMAC waveguide features strong field delocalization into the air, pushing the external optical field confinement factor up to 113% with low propagation loss. Our sensor operates in the important but underdeveloped long-wave infrared spectral region, where absorption fingerprints of plentiful chemical bonds are located. Acetone absorption spectroscopy is demonstrated using our sensor around 7.33 µm, showing a detection limit of 2.5 ppm with a waveguide length of only 10 mm.


Asunto(s)
Electricidad , Refractometría , Espectrofotometría Infrarroja
5.
Adv Sci (Weinh) ; 8(16): e2100583, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155822

RESUMEN

MicroRNAs play an important role in early development, cell proliferation, apoptosis, and cell death, and are aberrantly expressed in many types of cancers. To understand their function and diagnose cancer at an early stage, it is crucial to quantitatively detect microRNA without invasive labels. Here, a plasmonic biosensor based on surface-enhanced infrared absorption (SEIRA) for rapid, label-free, and ultrasensitive detection of miR-155 is reported. This technology leverages metamaterial perfect absorbers stimulating the SEIRA effect to provide up to 1000-fold near-field intensity enhancement over the microRNA fingerprint spectral bands. Additionally, it is discovered that the limit of detection (LOD) of the biosensor can be greatly improved by using tetrahedral DNA nanostructure (TDN) as carriers. By using near-field enhancement of SEIRA and specific binding of TDN, the biosensor achieves label-free detection of miR-155 with a high sensitivity of 1.162% pm-1 and an excellent LOD of 100 × 10-15 m. The LOD is about 5000 times lower than that using DNA single strand as probes and about 100 times lower than that of the fluorescence detection method. This work can not only provide a powerful diagnosis tool for the microRNAs detection but also gain new insights into the field of label-free and ultrasensitive SEIRA-based biosensing.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , ADN/química , MicroARNs/análisis , Nanoestructuras/química , Diseño de Equipo , Humanos , Rayos Infrarrojos , Límite de Detección , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Adv Sci (Weinh) ; 7(15): 1903636, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32775150

RESUMEN

Wearable photonics offer a promising platform to complement the thriving complex wearable electronics system by providing high-speed data transmission channels and robust optical sensing paths. Regarding the realization of photonic computation and tunable (de)multiplexing functions based on system-level integration of abundant photonic modulators, it is challenging to reduce the overwhelming power consumption in traditional current-based silicon photonic modulators. This issue is addressed by integrating voltage-based aluminum nitride (AlN) modulator and textile triboelectric nanogenerator (T-TENG) on a wearable platform to form a nano-energy-nano-system (NENS). The T-TENG transduces the mechanical stimulations into electrical signals based on the coupling of triboelectrification and electrostatic induction. The self-generated high-voltage from the T-TENG is applied to the AlN modulator and boosts its modulation efficiency regardless of AlN's moderate Pockels effect. Complementarily, the AlN modulator's capacitive nature enables the open-circuit operation mode of T-TENG, providing the integrated NENS with continuous force sensing capability which is notably uninfluenced by operation speeds. Furthermore, a physical model is proposed to describe the coupled AlN modulator/T-TENG system. With the enhanced photonic modulation and the open-circuit operation mode enabled by synergies between the AlN modulator and the T-TENG, optical Morse code transmission and continuous human motion monitoring are demonstrated for practical wearable applications.

7.
Microsyst Nanoeng ; 6: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567631

RESUMEN

Throat cancer treatment involves surgical removal of the tumor, leaving patients with facial disfigurement as well as temporary or permanent loss of voice. Surface electromyography (sEMG) generated from the jaw contains lots of voice information. However, it is difficult to record because of not only the weakness of the signals but also the steep skin curvature. This paper demonstrates the design of an imperceptible, flexible epidermal sEMG tattoo-like patch with the thickness of less than 10 µm and peeling strength of larger than 1 N cm-1 that exhibits large adhesiveness to complex biological surfaces and is thus capable of sEMG recording for silent speech recognition. When a tester speaks silently, the patch shows excellent performance in recording the sEMG signals from three muscle channels and recognizing those frequently used instructions with high accuracy by using the wavelet decomposition and pattern recognization. The average accuracy of action instructions can reach up to 89.04%, and the average accuracy of emotion instructions is as high as 92.33%. To demonstrate the functionality of tattoo-like patches as a new human-machine interface (HMI) for patients with loss of voice, the intelligent silent speech recognition, voice synthesis, and virtual interaction have been implemented, which are of great importance in helping these patients communicate with people and make life more enjoyable.

8.
Opt Express ; 27(24): 35600-35608, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878729

RESUMEN

We present an ultra-small photonic crystal-based test tool for gas permeability of polymers. It features a fully-etched photonic crystal (PhC) structure occupying an area of 20 µm × 800 µm on silicon-on-insulator wafer. The light-matter interaction in the PhC cavity with deformed Polydimethylsiloxane (PDMS) under pressure difference was investigated with finite element method and finite-difference time-domain method numerically. Next, three PDMS membranes of different mixing ratios were utilized for the characterization of gas permeation flux. The feasibility and effectiveness of the proposed working mechanism are verified through clearly distinguishing the gas permeability of these three testing samples. Compared with conventional test tools, this proposed test tool has fast response while it consumes less testing gas volume in a testing system with reduced footprint. Potentially, it can be integrated into lab-on-a-chip devices to measure gas permeation in nano scale.

9.
Opt Express ; 27(14): 19815-19826, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503736

RESUMEN

Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.

10.
Nanomaterials (Basel) ; 9(5)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052600

RESUMEN

With the development of the Internet of Things and information technology, a large number of inexpensive sensors are needed to monitor the state of the object. A wide variety of sensors with a low cost can be made using the difference in charge attractiveness between flexible polymers and other materials. Compared to the two solid materials,a sensor made of a solid polymer-liquid has a large contact area and low friction. A motion-balanced sensor is presented based on the polytetrafluoroethene pipe and nano-iron suspension. The effect of the concentration and volume of the nano-iron suspension on the output voltage of the sensor is analyzed. The motion-balanced sensor can be used to measure the tilt angle of the object and there is a linear relationship between the output voltage and the tilt angle. A comparison test is performed to a commercial acceleration sensor with PZT-5. The test results show that the frequency characteristics and amplitude characteristics of the motion-balanced sensor are consistent with those of the acceleration sensor. The motion-balanced sensor can be used to determine the state of exercise such as walking, running, etc. The motion-balanced sensor has broad application prospects for monitoring the bridges and power towers balance, stroke patients' health assessment, etc.

11.
Opt Lett ; 44(1): 73-76, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645551

RESUMEN

We report an aluminum nitride on insulator platform for mid-infrared (MIR) photonics applications beyond 3 µm. Propagation loss and bending loss are studied, while functional devices such as directional couplers, multimode interferometers, and add/drop filters are demonstrated with high performance. The complementary metal-oxide-semiconductor-compatible aluminum nitride offers advantages ranging from a large transparency window, high thermal and chemical resistance, to piezoelectric tunability and three-dimensional integration capability. This platform can have synergy with other photonics platforms to enable novel applications for sensing and thermal imaging in MIR.

12.
ACS Appl Mater Interfaces ; 10(44): 38272-38279, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30360088

RESUMEN

The surface-enhanced infrared absorption (SEIRA) technique has been focusing on the metallic resonator structures for decades, exploring different approaches to enhance sensitivity. Although the high enhancement is achieved, the dissipative loss and strong heating are the intrinsic drawbacks of metals. Recently, the dielectric platform has emerged as a promising alternative. In this work, we report a guided resonance-based all-dielectric photonic crystal slab as the platform for SEIRA. The guided resonance-induced enhancement in the effective path length and electric field, together with gas enrichment polymer coating, leads to a detection limit of 20 ppm in carbon dioxide (CO2) sensing. This work explores the feasibility to apply low loss all-dielectric structures as a surface enhancement method in the transmission mode.

13.
Adv Sci (Weinh) ; 5(5): 1700581, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29876204

RESUMEN

Application of two major classes of CO2 gas sensors, i.e., electrochemical and nondispersive infrared is predominantly impeded by the poor selectivity and large optical interaction length, respectively. Here, a novel "hybrid metamaterial" absorber platform is presented by integrating the state-of-the-art complementary metal-oxide-semiconductor compatible metamaterial with a smart, gas-selective-trapping polymer for highly selective and miniaturized optical sensing of CO2 gas in the 5-8 µm mid-IR spectral window. The sensor offers a minimum of 40 ppm detection limit at ambient temperature on a small footprint (20 µm by 20 µm), fast response time (≈2 min), and low hysteresis. As a proof-of-concept, net absorption enhancement of 0.0282%/ppm and wavelength shift of 0.5319 nm ppm-1 are reported. Furthermore, the gas- selective smart polymer is found to enable dual-mode multiplexed sensing for crosschecking and validation of gas concentration on a single platform. Additionally, unique sensing characteristics as determined by the operating wavelength and bandwidth are demonstrated. Also, large differential response of the metamaterial absorber platform for all-optical monitoring is explored. The results will pave the way for a physical understanding of metamaterial-based sensing when integrated with the mid-IR detector for readout and extending the mid-IR functionalities of selective polymers for the detection of technologically relevant gases.

14.
Nanoscale ; 7(33): 13907-17, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26219542

RESUMEN

Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.


Asunto(s)
Hexoquinasa/química , Nanoestructuras/química , Nanotubos de Carbono/química , Péptidos/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Endosomas/metabolismo , Fluoresceína-5-Isotiocianato/química , Células HCT116 , Humanos , Células MCF-7 , Microscopía Fluorescente , Mitocondrias/metabolismo , Nanoestructuras/toxicidad
15.
Opt Express ; 23(8): 10598-603, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969099

RESUMEN

We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08µm to 3.78µm, with the peak reflection of 96% at 3.16µm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics.

16.
Lab Chip ; 15(6): 1445-50, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25599134

RESUMEN

We developed a novel gradient generator to achieve long range and linear chemical gradients with a dynamic control function. The length of the gradient can be on the centimetre scale. The gradient profile can be tuned by changing the flow rates. The device can work in both high flow rate regimes with large shear stress and low flow rate regimes with minimum shear stress. The drug screening function was demonstrated by the viability test of PC-9 cancer cells.


Asunto(s)
Convección , Técnicas Analíticas Microfluídicas/instrumentación , Línea Celular Tumoral , Supervivencia Celular , Diseño de Equipo , Humanos
17.
Int J Nanomedicine ; 10: 7425-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719686

RESUMEN

Carbon nanotubes' (CNTs) hollow interior space has been explored for biomedical applications, such as drug repository against undesirable inactivation. To further devise CNTs as smart material for controlled release of cargo molecules, we propose the concept of "gold-carbon nanobottles". After encapsulating cis-diammineplatinum(II) dichloride (cisplatin, CDDP) in CNTs, we covalently attached gold nanoparticles (AuNPs) at the open-tips of CNTs via different cleavable linkages, namely hydrazine, ester, and disulfide-containing linkages. Compared with our previous study in which more than 80% of CDDP leaked from CNTs in 2 hours, AuNPs were found to significantly decrease such spontaneous release to <40%. In addition, CDDP release from AuNP-capped CNTs via disulfide linkage was selectively enhanced by twofolds in reducing conditions (namely with 1 mM dithiothreitol [DTT]), which mimic the intracellular environment. We treated human colon adenocarcinoma cells HCT116 with our CDDP-loaded gold-carbon nanobottles and examined the cell viability using lactate dehydrogenase assay. Interestingly, we found that our nanobottles with cleavable disulfide linkage exerted stronger cytotoxic effect in HCT116 compared with normal human fetal lung fibroblast cells IMR-90. Therefore, we infer that our nanobottles strategy with inbuilt disulfide linkage could attain selective release of payload in highly reductive tumor tissues while avoiding collateral damage to normal tissues.


Asunto(s)
Cisplatino/farmacología , Oro/química , Nanotubos de Carbono/química , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células HCT116 , Humanos , Nanotubos de Carbono/ultraestructura
18.
Artículo en Inglés | MEDLINE | ID: mdl-21096718

RESUMEN

This paper describes the design of a tri-axial microelectromechanical force sensor (FS) that can be mounted on the tip of the guidewire. Piezoresistive silicon nanowires (SiNW) are embedded into a cross cantilever design with a manoeuvrable stylus to allow the detection of force in all directions. The electrical resistance changes in the four SiNWs are used to decode an arbitrary force applied onto the FS. The sensitivity of the device can be improved by two orders of magnitude compared to bulk Si thanks to the giant piezoresistive effects offered by the SiNW. Robustness of the FS is improved due to the novel design by incorporating a mechanical stopper at the tip of the stylus. Finite element analysis (FEM) analysis was used in designing the FS.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Nanocables , Diseño de Equipo , Análisis de Elementos Finitos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA