Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
BMC Biol ; 22(1): 105, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702628

RESUMEN

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38556878

RESUMEN

In liver transplantation, the primary concern is to ensure an adequate future liver remnant (FLR) volume for the donor, while selecting a graft of sufficient size for the recipient. The living donor-resection and partial liver segment 2-3 transplantation with delayed total hepatectomy (LD-RAPID) procedure offers a potential solution to expand the donor pool for living donor liver transplantation (LDLT). We report the first case involving a cirrhotic patient with autoimmune hepatitis and hepatocellular carcinoma, who underwent left lobe LDLT using the LD-RAPID procedure. The living liver donor (LLD) underwent a laparoscopic left hepatectomy, including middle hepatic vein. The resection on the recipient side was an extended left hepatectomy, including the middle hepatic vein orifice and caudate lobe. At postoperative day 7, a computed tomography scan showed hypertrophy of the left graft from 320 g to 465 mL (i.e., a 45.3% increase in graft volume body weight ratio from 0.60% to 0.77%). After a 7-day interval, the diseased right lobe was removed in the second stage surgery. The LD-RAPID procedure using left lobe graft allows for the use of a small liver graft or small FLR volume in LLD in LDLT, which expands the donor pool to minimize the risk to LLD by enabling the donation of a smaller liver portion.

3.
Biofabrication ; 16(2)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38447223

RESUMEN

Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6µm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Hidrogeles/química , Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana , Medicina Regenerativa , Andamios del Tejido/química
4.
Curr Opin Microbiol ; 77: 102401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988810

RESUMEN

Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/genética , Fosfatos/metabolismo , Homeostasis
5.
Mol Ther Oncolytics ; 30: 301-315, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37727704

RESUMEN

Oncolytic viruses are of significant clinical interest due to their ability to directly infect and kill tumors and enhance the anti-tumor immune response. Previously, we developed KLS-3010, a novel oncolytic virus derived from the International Health Department-White (IHD-W) strain vaccinia virus, which has robust tumoricidal effects. In the present study, we generated a recombinant oncolytic virus, KLS-3020, by inserting three transgenes (hyaluronidase [PH-20], interleukin-12 [IL-12], and soluble programmed cell death 1 fused to the Fc domain [sPD1-Fc]) into KLS-3010 and investigated its anti-tumor efficacy and ability to induce anti-tumor immune responses in CT26.WT and B16F10 mouse tumor models. A single injection of KLS-3020 significantly decreased tumor growth. The roles of the transgenes were investigated using viruses expressing each single transgene alone and KLS-3020. PH-20 promoted virus spread and tumor immune cell infiltration, IL-12 activated and reprogrammed T cells to inflammatory phenotypes, and sPD1-Fc increased intra-tumoral populations of activated T cells. The tumor-specific systemic immune response and the abscopal tumor control elicited by KLS-3020 were demonstrated in the CT26.WT tumor model. The insertion of transgenes into KLS-3020 increased its anti-tumor efficacy, supporting further clinical investigation of KLS-3020 as a novel oncolytic immunotherapy.

6.
Adv Exp Med Biol ; 1415: 215-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440036

RESUMEN

Balanced activities of matrix metalloproteinases (MMPs) and their inhibitors are essential for photoreceptor (PR) cell survival. PR rod cell survival in rodent models of inherited retinitis pigmentosa (RP) is prolonged by recombinant tissue inhibitor of metalloproteinase (TIMP)-1 or clusterin (CLU) proteins. Retinal pigment epithelial cells (RPE) and Müller glia (MG) cells support PR cells. In human RPE and MG cell lines, we measured their mRNA levels of the two genes with quantitative real-time PCR (qRT-PCR) with interleukin (IL)-1ß treatment, a key pathological component in retinal degeneration. Endogenous CLU gene expression was significantly downregulated by IL-1ß in both cell types, whereas TIMP-1 expression was upregulated in MG cells, suggesting the transcriptional control of CLU is potentially more sensitive to inflammatory conditions. The expression levels of CLU endocytic receptors revealed that the low-density lipoprotein receptor-related protein 2 (LRP2) was upregulated only in MG cells by the treatment with no detectable change in RPE cells. Like LRP2, IL-1ß upregulated TIMP-1 receptor LRP1 expression in MG cells; however, it was decreased in the expression of RPE cells. These data suggest that the gene expression of CLU and TIMP-1 and their receptors may be dynamically modulated in inflammatory conditions.


Asunto(s)
Clusterina , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Clusterina/genética , Células Ependimogliales , Células Epiteliales/metabolismo , Expresión Génica , Pigmentos Retinianos/metabolismo
7.
Int J Nanomedicine ; 17: 3711-3722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051351

RESUMEN

Purpose: Magnetic particle imaging (MPI) is an emerging radiation-free, non-invasive three-dimensional tomographic technology that can visualize the concentrations of superparamagnetic iron oxide nanoparticles (SPIONs). To verify the applicability of the previously proposed point-of-care testing MPI (PoCT-MPI) in medical diagnosis and therapeutics, we imaged SPIONs in animal tumor models. Methods: CT26 or MC38 mouse colon carcinoma cells (2 × 106 cells) were subcutaneously injected into the right flank of BALB/c mice. SPIONs were either injected directly into the tumor lesions in the intratumoral group or through tail veins in the intravenous group. CT26 and MC38 tumor models were examined both intratumorally and intravenously to confirm the biological availability of SPIONs using PoCT-MPI. Results: Signals were observed in the tumor lesions from day 1 to day 7. This is the first study to successfully image the pathological region and show the biodistribution of SPIONs in CT26 tumor models using the recently developed PoCT-MPI technology. Furthermore, MC38 tumor models were examined, resulting in similar images to those of the CT26 tumor model in both intratumoral and intravenous groups. Conclusion: The present study demonstrates the biological applicability of PoCT-MPI, which promises to be a powerful diagnostic and therapeutic technique in biomedical imaging.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Animales , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos , Imagen por Resonancia Magnética , Ratones , Distribución Tisular , Tomografía
8.
J Funct Biomater ; 13(2)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35466216

RESUMEN

Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds' mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations.

9.
Molecules ; 27(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335230

RESUMEN

As part of an ongoing natural product chemical research for the discovery of bioactive secondary metabolites with novel structures, wild fruiting bodies of Daedaleopsis confragosa were collected and subjected to chemical and biological analyses. We subjected the fractions derived from the methanol extract of the fruiting bodies of D. confragosa to bioactivity-guided fractionation because the methanol extract of D. confragosa showed antibacterial activity against Helicobacter pylori strain 51, according to our bioactivity screening. The n-hexane and dichloromethane fractions showed moderate to weak antibacterial activity against H. pylori strain 51, and the active fractions were analyzed for the isolation of antibacterial compounds. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that the n-hexane fraction contains several compounds which are absent in the other fractions, so the fraction was prioritized for further fractionation. Through chemical analysis of the active n-hexane and dichloromethane fractions, we isolated five ergosterol derivatives (1-5), and their chemical structures were determined to be demethylincisterol A3 (1), (20S,22E,24R)-ergosta-7,22-dien-3ß,5α,6ß-triol (2), (24S)-ergosta-7-ene-3ß,5α,6ß-triol (3), 5α,6α-epoxy-(22E,24R)-ergosta-7,22-dien-3ß-ol (4), and 5α,6α-epoxy-(24R)-ergosta-7-en-3ß-ol (5) by NMR spectroscopic analysis. This is the first report on the presence of ergosterol derivatives (1-5) in D. confragosa. Compound 1 showed the most potent anti-H. pylori activity with 33.9% inhibition, rendering it more potent than quercetin, a positive control. Compound 3 showed inhibitory activity comparable to that of quercetin. Distribution analysis of compound 1 revealed a wide presence of compound 1 in the kingdom Fungi. These findings indicate that demethylincisterol A3 (1) is a natural antibiotic that may be used in the development of novel antibiotics against H. pylori.


Asunto(s)
Agaricales , Antibacterianos/farmacología , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Polyporaceae , República de Corea , Esteroles/farmacología , Espectrometría de Masas en Tándem
10.
Cancer Res Treat ; 54(3): 767-781, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34607394

RESUMEN

PURPOSE: Heat shock protein-90 (HSP90) remains an important cancer target because of its involvement in multiple oncogenic protein pathways and biologic processes. Although many HSP90 inhibitors have been tested in the treatment of KRAS-mutant non-small cell lung cancer (NSCLC), most, including AUY922, have failed due to toxic effects and resistance generation, even though a modest efficacy has been observed for these drugs in clinical trials. In our present study, we investigated the novel mechanism of resistance to AUY922 to explore possible avenues of overcoming and want to provide some insights that may assist with the future development of successful next-generation HSP90 inhibitors. MATERIALS AND METHODS: We established two AUY922-resistant KRAS-mutated NSCLC cells and conducted RNA sequencing to identify novel resistance biomarker. RESULTS: We identified novel two resistance biomarkers. We observed that both integrin Av (ITGAv) and ß3 (ITGB3) induce AUY922-resistance via focal adhesion kinase (FAK) activation, as well as an epithelial-mesenchymal transition, in both in vitro and in vivo xenograft model. mRNAs of both ITGAv and ITGB3 were also found to be elevated in a patient who had shown acquired resistance in a clinical trial of AUY922. ITGAv was induced by miR-142 downregulation, and ITGB3 was increased by miR-150 downregulation during the development of AUY922-resistance. Therefore, miR-150 and miR-142 overexpression effectively inhibited ITGAvB3-dependent FAK activation, restoring sensitivity to AUY922. CONCLUSION: The synergistic co-targeting of FAK and HSP90 attenuated the growth of ITGAvB3-induced AUY922-resistant KRAS-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome acquired AUY922-resistance in KRAS-mutant NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
11.
Front Plant Sci ; 12: 700413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589095

RESUMEN

The antioxidant glutathione (GSH) mitigates adverse physio-metabolic effects and defends against abiotic types of stress, such as cadmium (Cd) stress. However, its function and role in resisting Cd phytotoxicity by leveraging plant antioxidant-scavenging, redox-regulating, and hormone-balancing systems have not been comprehensively and systematically demonstrated in the Cd-hyperaccumulating plant Brassica napus L. cv. Tammi (oilseed rape). In this study, the effects of exogenously applied GSH to the leaves of B. napus seedlings exposed to Cd (10 µM) were investigated. As a result, Cd stress alone significantly inhibited growth and increased the levels of reactive oxygen species (ROS) and the bioaccumulation of Cd in the seedlings compared with those in unstressed controls. Furthermore, Cd stress induced an imbalance in plant stress hormone levels and decreases in endogenous GSH levels and GSH redox ratios, which were correlated with reductions in ascorbate (AsA) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox states. However, the exogenous application of GSH to Cd-stressed B. napus seedlings reduced Cd-induced ROS levels and enhanced antioxidant-scavenging defenses and redox regulation by both increasing seedling AsA, GSH, and NADPH concentrations and rebalancing stress hormones, thereby enhancing Cd uptake and accumulation. These results demonstrate that GSH improved plant redox status by upregulating the AsA-GSH-NADPH cycle and reestablishing normal hormonal balance. This indicates that exogenously applied GSH can mitigate Cd phytotoxicity in B. napus and possibly other plants. Therefore, GSH can potentially be applied to Cd-polluted soil for plant remediation.

12.
PLoS One ; 16(7): e0253915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270579

RESUMEN

Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1ß and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1ß and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1ß treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.


Asunto(s)
Núcleo Celular/metabolismo , Células Ependimogliales/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Estrés Oxidativo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Línea Celular , Células Ependimogliales/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Interleucina-1beta/farmacología , Proteína Kangai-1/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
13.
Front Oncol ; 11: 631469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816268

RESUMEN

TNF-α plays a crucial role in cancer initiation and progression by enhancing cancer cell proliferation, survival, and migration. Even though the known functional role of AWP1 (zinc finger AN1 type-6, ZFAND6) is as a key mediator of TNF-α signaling, its potential role in the TNF-α-dependent responses of cancer cells remains unclear. In our current study, we found that an AWP1 knockdown using short hairpin RNAs increases the migratory potential of non-aggressive MCF-7 breast cancer cells with no significant alteration of their proliferation in response to TNF-α. A CRISPR/Cas9-mediated AWP1 knockout in MCF-7 cells led to mesenchymal cell type morphological changes and an accelerated motility. TNF-α administration further increased this migratory capacity of these AWP1-depleted cells through the activation of NF-κB accompanied by increased epithelial-mesenchymal transition-related gene expression. In particular, an AWP1 depletion augmented the expression of Nox1, reactive oxygen species (ROS) generating enzymes, and ROS levels and subsequently promoted the migratory potential of MCF-7 cells mediated by TNF-α. These TNF-α-mediated increases in the chemotactic migration of AWP1 knockout cells were completely abrogated by an NF-κB inhibitor and a ROS scavenger. Our results suggest that a loss-of-function of AWP1 alters the TNF-α response of non-aggressive breast cancer cells by potentiating ROS-dependent NF-κB activation.

14.
Hum Gene Ther ; 32(9-10): 517-527, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32854548

RESUMEN

Oncolytic viruses are promising cancer therapies due to their selective killing of tumor cells and ability to stimulate the host immune system. As an oncolytic virus platform, vaccinia virus has unique advantages, including rapid replication, a broad range of host targets, and a large capacity for transgene incorporation. In this study, we developed a novel oncolytic vaccinia virus with high potency and a favorable safety profile. We began with the International Health Department-White (IHD-W) strain, which had the strongest cytotoxicity against tumor cells among the four vaccinia virus strains tested. Next, several candidate viruses were constructed by deleting three viral genes (C11R, K3L, and J2R) in various combinations, and their efficacy and safety were compared. The virus ultimately selected, named KLS-3010, exhibited strong antitumor activity against broad targets in vitro and in vivo. Furthermore, KLS-3010 showed a favorable safety profile in mice, as determined by the biodistribution and body weight change. More promisingly, KLS-3010 was able to shift the tumor microenvironment to a proinflammatory state, as evidenced by an increase in activated lymphocytes after KLS-3010 administration, suggesting that this strain may elicit an oncolytic virus-mediated immune response. The KLS-3010 strain thus represents a promising platform for the further development of oncolytic virus-based cancer therapies.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Animales , Línea Celular Tumoral , Salud Global , Ratones , Virus Oncolíticos/genética , Distribución Tisular , Virus Vaccinia/genética , Replicación Viral
15.
Front Plant Sci ; 11: 586547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329648

RESUMEN

The role of ascorbate (AsA) in antioxidant defense system-associated resistance to cadmium (Cd) in oilseed rape plants has not yet been clearly demonstrated. The present study investigated the critical role of exogenous AsA on the physiological and biochemical responses of reactive oxygen species (ROS) and antioxidant scavenging defense systems in oilseed rape (Brassica napus L. cv. Tammi) seedlings exposed to Cd. Cd (10 µM) treatment led to significant reductions in plant growth; increases in the levels of superoxide anion radical, hydrogen peroxide, and malondialdehyde; and increases in Cd uptake and accumulation by the roots and shoots in hydroponically grown 10-day-old seedlings. Moreover, it reduced AsA content and AsA redox ratios, which have been correlated with reductions in glutathione (GSH) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox status. However, exogenously applying AsA to Cd-exposed seedlings decreased Cd-induced ROS, improved antioxidant defense systems by increasing AsA, GSH, and NADPH contents, and increased Cd uptake and accumulation in both roots and shoots of the plants. These results provided evidence that the enhancement in AsA redox status can be linked to an increase in the GSH and/or NADPH redox ratios through the induction of the AsA-GSH-NADPH cycle. Thus, these results suggest that exogenous AsA application to oilseed rape seedlings under Cd stress might alleviate the overall Cd toxicity by regulating the homeostasis of the AsA-GSH-NADPH cycle, which reestablishes the steady-state cellular redox status.

16.
Front Immunol ; 11: 581165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312172

RESUMEN

Bacteria-released components can modulate host innate immune response in the absence of direct host cell-bacteria interaction. In particular, bacteria-derived outer membrane vesicles (OMVs) were recently shown to activate host caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide. However, further precise understanding of innate immune-modulation by bacterial OMVs remains elusive. Here, we present evidence that flagellated bacteria-released OMVs can trigger NLRC4 canonical inflammasome activation via flagellin delivery to the cytoplasm of host cells. Salmonella typhimurium-derived OMVs caused a robust NLRC4-mediated caspase-1 activation and interleukin-1ß secretion in macrophages in an endocytosis-dependent, but guanylate-binding protein-independent manner. Notably, OMV-associated flagellin is crucial for Salmonella OMV-induced inflammasome response. Flagellated Pseudomonas aeruginosa-released OMVs consistently promoted robust NLRC4 inflammasome activation, while non-flagellated Escherichia coli-released OMVs induced NLRC4-independent non-canonical inflammasome activation leading to NLRP3-mediated interleukin-1ß secretion. Flagellin-deficient Salmonella OMVs caused a weak interleukin-1ß production in a NLRP3-dependent manner. These findings indicate that Salmonella OMV triggers NLRC4 inflammasome activation via OMV-associated flagellin in addition to a mild induction of non-canonical inflammasome signaling via OMV-bound lipopolysaccharide. Intriguingly, flagellated Salmonella-derived OMVs induced more rapid inflammasome response than flagellin-deficient Salmonella OMV and non-flagellated Escherichia coli-derived OMVs. Supporting these in vitro results, Nlrc4-deficient mice showed significantly reduced interleukin-1ß production after intraperitoneal challenge with Salmonella-released OMVs. Taken together, our results here propose that NLRC4 inflammasome machinery is a rapid sensor of bacterial OMV-bound flagellin as a host defense mechanism against bacterial pathogen infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Membrana Externa Bacteriana/inmunología , Proteínas de Unión al Calcio/inmunología , Flagelina/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas/inmunología , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Caspasa 1/metabolismo , Citosol/inmunología , Endocitosis , Activación Enzimática , Flagelina/administración & dosificación , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología
17.
BMC Med Genomics ; 13(1): 171, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172452

RESUMEN

BACKGROUND: MYCN amplification is the most important genomic feature in neuroblastoma (NB). However, limited studies have been conducted on the MYCN non-amplified NB including low- and intermediate-risk NB. Here, the genomic characteristics of MYCN non-amplified NB were studied to allow for the identification of biomarkers for molecular stratification. METHODS: Fifty-eight whole exome sequencing (WES) and forty-eight whole transcriptome sequencing (WTS) samples of MYCN non-amplified NB were analysed. Forty-one patients harboured WES and WTS pairs. RESULTS: In the MYCN non-amplified NB WES data, maximum recurrent mutations were found in MUC4 (26%), followed by RBMXL3 (19%), ALB (17%), and MUC16 and SEPD8 (14% each). Two gene fusions, CCDC32-CBX3 (10%) and SAMD5-SASH1 (6%), were recurrent in WTS analysis, and these fusions were detected mostly in non-high-risk patients with ganglioneuroblastoma histology. Analysis of risk-group-specific biomarkers showed that several genes and gene sets were differentially expressed between the risk groups, and some immune-related pathways tended to be activated in the high-risk group. Mutational signatures 6 and 18, which represent DNA mismatch repair associated mutations, were commonly detected in 60% of the patients. In the tumour mutation burden (TMB) analysis, four patients showed high TMB (> 3 mutations/Mb), and had mutations in genes related to either MMR or homologous recombination. Excluding four outlier samples with TMB > 3 Mb, high-risk patients had significantly higher levels of TMB compared with the non-high-risk patients. CONCLUSIONS: This study provides novel insights into the genomic background of MYCN non-amplified NB. Activation of immune-related pathways in the high-risk group and the results of TMB and mutational signature analyses collectively suggest the need for further investigation to discover potential immunotherapeutic strategies for NB.


Asunto(s)
Mutación , Proteína Proto-Oncogénica N-Myc/genética , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Transcriptoma , Adolescente , Secuencia de Bases , Niño , Preescolar , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Lactante , Recién Nacido , Masculino , Metástasis de la Neoplasia , Neuroblastoma/terapia , Proteínas de Fusión Oncogénica/genética , Estudios Prospectivos , Riesgo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Secuenciación del Exoma
18.
Am J Cancer Res ; 10(9): 2878-2894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042623

RESUMEN

Anti-PD-1/PD-L1 immunotherapy, as a treatment for many tumors, has shown good efficacy. However, responses to immunotherapy did not always occur or last long., i.e. primary or acquired resistance, even tumors were PD-L1 positive. Several oncogenic pathways, including PI3K/AKT activation by PTEN loss and NF-κB activation, induce PD-L1 expression and PD-L1 inhibitor-resistance. They also induce expression of CCL2, an inhibitory chemokine that blocks T cell tracking into the tumor by binding to CCR2 on the T cell surface. In this study, we showed that transglutaminase 2 (TG2), a post-translational modification enzyme, induced ubiquitin-proteasome dependent degradation of tumor suppressors including PTEN and IκBα by peptide cross-linking, inducing CCL2 as well as PD-L1 expression via PI3K/AKT and NF-κB activation. It also induced PD-L1 inhibitor-resistance because CCL2 was expressed despite increased PD-L1, which was blocked by PD-L1 inhibitor. We also revealed that inhibition of TG2, instead of PD-L1, restored T cell-dependent killing effect by blocking expression of both PD-L1 and CCL2 in PD-L1(+) triple negative breast cancer (TNBC) cells. In addition, the TG2-expressing TNBC patient group showed higher PD-L1 expression incidence than did the TG2-negative TNBC patient group. In conclusion, TG2 induces primary PD-1/PD-L1 inhibitor-resistance by inducing CCL2 expression. TG2 blockade can be utilized as an excellent therapeutic strategy to overcome PD-L1 inhibitor-resistance in PD-L1(+) TNBC patients. Our study suggested that PD-L1 expression alone might not always be a predictive biomarker for PD-L1(+) TNBC, but TG2 could be a useful predictive marker to select PD-L1 inhibitor-resistant TNBC patients.

19.
J Clin Med ; 9(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847064

RESUMEN

This study aimed to identify the prognostic subgroups of stage 4 high-risk neuroblastoma based on metastatic burden and explore their distinct clinical and genomic features. Patients aged ≥18 months with stage 4 and metaiodobenzylguanidine-avid neuroblastoma were enrolled. One hundred and thirty eligible patients were treated under the tandem high-dose chemotherapy scheme. Prognostic significance of metastatic burden measured by the modified Curie score was analyzed using a competing risk approach, and the optimal cut-point was determined. Metastasis-specific subgroups (cut-point: 26) were compared using clinicopathological variables, and differential gene expression analysis and gene set variation analysis (GSVA) were performed using RNA sequencing (RNA-seq). Metastatic burden at diagnosis showed a progressive association with relapse/progression. After applying the cut-point, patients with high metastatic burden showed >3-fold higher risk of relapse/progression than those with low metastatic burden. Moreover, patients with high metastatic burden showed smaller primary tumors and higher biochemical marker levels than those with low metastatic burden. In the genomic analysis, 51 genes were found to be differentially expressed based on the set criteria. GSVA revealed 55 gene sets, which significantly distinguished patients with high metastatic burden from those with low metastatic burden at a false discovery rate <0.25. The results indicated the prognostic significance of metastatic burden in stage 4 high-risk neuroblastoma, and we identified the distinct clinicopathological and genomic features based on metastatic burden. This study may aid in the better understanding and risk-stratification of stage 4 high-risk neuroblastoma patients.

20.
Mol Cancer Res ; 18(9): 1315-1325, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554602

RESUMEN

gBRCA1/2 mutations increase the incidence of breast cancer by interrupting the homologous recombination repair (HRR) pathway. Although gBRCA1 and gBRCA2 breast cancer have similar clinical profiles, different molecular characteristics have been observed. In this study, we conducted comprehensive genomic analyses and compared gBRCA1/2 breast cancer. Sanger sequencing to identify gBRCA1/2 mutations was conducted in 2,720 patients, and gBRCA1 (n = 128) and gBRCA2 (n = 126) mutations were analyzed. Within this population, deep target sequencing and matched whole-transcriptome sequencing (WTS) results were available for 46 and 34 patients, respectively. An internal database of patients with breast cancer with wild-type gBRCA was used to compile a target sequencing (n = 195) and WTS (n = 137) reference dataset. Three specific mutation sites, p.Y130X (n = 14) and p.1210Afs (n = 13) in gBRCA1 and p.R294X (n = 22) in gBRCA2, were comparably frequent. IHC subtyping determined that the incidence of triple-negative breast cancer was higher among those with a gBRCA1 mutation (71.9%), and estrogen receptor-positive breast cancer was dominant in those with a gBRCA2 mutation (76.2%). gBRCA1/2 mutations were mutually exclusive with PIK3CA somatic mutations (P < 0.05), and gBRCA1 frequently cooccurred with TP53 somatic mutations (P < 0.05). The median tumor mutation burden was 6.53 per megabase (MB) in gBRCA1 and 6.44 per MB in gBRCA2. The expression of AR, ESR1, and PGR was significantly upregulated with gBRCA2 mutation compared with gBRCA1 mutation. gBRCA1 and gBRCA2 breast cancer have similar clinical characteristics, but they have different molecular subtypes, coaltered somatic mutations, and gene expression patterns. IMPLICATIONS: Even though gBRCA1 and gBRCA2 mutations both alter HRR pathways, our results suggest that they generate different molecular characteristics and different mechanisms of carcinogenesis.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Mutación de Línea Germinal , Adulto , Anciano , Femenino , Genómica/métodos , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA