Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
World J Mens Health ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37853537

RESUMEN

PURPOSE: Benign prostate hyperplasia (BPH) is a common age-related chronic condition. Its pathogenesis involves androgen imbalance, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress. This study aims to assess the protective effect of finasteride, a 5α-reductase inhibitor, against testosterone propionate (TP)-induced BPH in rats and explore its potential mechanism of action. MATERIALS AND METHODS: TP-induced BPH rats received either saline or finasteride (1 mg/kg) orally once a day for 7 weeks. Prior to sacrificing the animals, blood samples were collected. After sacrifice, prostate and tissue around the prostate were dissected from seminal vesical for further analysis. Body weight, prostate weight, dihydrotestosterone (DHT), 5α-reductase type 2 (5-AR2), and prostate-specific antigen (PSA) levels were measured. In addition, HIF-1α, VEGF, MMP-2 expressions in prostate, oxidative stress, inflammation, and ER stress responses were analyzed to understand the mechanism of action of finasteride. RESULTS: Finasteride administration inhibited prostate enlargement, DHT, 5-AR2, and PSA levels in BPH rats. Additionally, finasteride inhibited angiogenesis markers such as HIF-1α, VEGF, and MMP-2. Moreover, components of oxidative stress, inflammation, and ER stress responses were significantly regulated by finasteride treatment. CONCLUSIONS: This study suggests that finasteride prevents BPH-associated symptoms by regulating angiogenesis, reactive oxygen species, ER stress responses, and inflammation, another mechanism to explain the effect of the 5α-reductase against BPH.

2.
Sci Rep ; 13(1): 12861, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553432

RESUMEN

Periodontitis is an infectious inflammation in the gums characterized by loss of periodontal ligaments and alveolar bone. Its persistent inflammation could result in tooth loss and other health issues. Ixeris dentata (IXD) and Lactobacillus gasseri media (LGM) demonstrated strong antioxidant activity, which may prevent oxidative and inflammatory periodontitis. Here, IXD and LGM extracts were investigated for antioxidative activity against oral discomfort and evaluated for their synergistic effect against oxidative and inflammatory periodontitis in a mouse model. IXD/LGM suppressed pro-inflammatory cytokines like interleukin (IL)-1ß, IL-6, and TNF-α. Additionally, it reduced pro-inflammatory mediators, nitric oxide, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) and enhanced AKT, Nrf2, and HO-1 activation. Similarly, IXD/LGM treatment elevated osteogenic proteins and mRNAs; alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). Hematoxylin and Eosin (H&E) staining and micro-CT analysis confirm the positive impact of IXD/LGM on the periodontal structure and its associated inflammation. These findings demonstrate that IXD/LGM inhibits oxidative stress, periodontal inflammation, and its resultant alveolar bone loss in which Akt (also known as protein kinase B)-nuclear factor-erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1 (HO-1) signaling is involved. Thus, IXD/LGM is a potential candidate against oxidative/inflammatory stress-associated periodontitis.


Asunto(s)
Asteraceae , Lactobacillus gasseri , Periodontitis , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt , Factor 2 Relacionado con NF-E2/metabolismo , Periodontitis/prevención & control , Inflamación , Antioxidantes , Asteraceae/metabolismo , Hemo-Oxigenasa 1
3.
Foods ; 12(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509819

RESUMEN

Polyphenols and other compounds with antioxidant properties are found in plants and are one of the main antioxidants proven to reduce body weight and the risk of insulin resistance. Still, the mechanism behind the protective effects against obesity remains unclear. Thus, the study aims to assess the impact of flavonoid-rich arriheuk extract, a purple wheat extract, on mitochondrial function using 3T3-L1 adipocytes and investigate the molecular mechanism behind its protective effects against adipogenesis and lipolysis. The study findings strongly indicate that arriheuk significantly suppressed triglyceride levels and inhibited the expression of transcription factors like C/EBPα and PPARγ in 3T3-L1 adipocytes. Furthermore, treatment with arriheuk suppressed the expression of SREBP1c and FAS proteins linked to lipogenesis. In addition, treatment with arriheuk extract decreased the mRNA levels of adipogenic transcription factors, increased glycerol release, and inhibited adipocyte differentiation. Interestingly, the arriheuk-mediated PGC-1α expression triggered mitochondrial biogenesis by promoting the AMPK phosphorylation and SIRT1 expression in adipocytes. Also, arriheuk suppressed adipogenesis and elicited browning through the AMPK- and SIRT1-associated pathways. Collectively, these findings strongly suggest that arriheuk extract regulates browning in 3T3-L1 white adipocytes by triggering the AMPK/SIRT1 pathway, indicating the prospective applications of arriheuk as a functional food to control obesity.

4.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37511015

RESUMEN

Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.


Asunto(s)
Centella , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Vitis , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Vitis/metabolismo , Centella/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Citocinas/metabolismo , Antiinflamatorios/farmacología , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Tetracloruro de Carbono/farmacología
5.
Am J Respir Cell Mol Biol ; 69(1): 57-72, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36930952

RESUMEN

Various environmental compounds are inducers of lung injury. Mitochondria are crucial organelles that can be affected by many lung diseases. NecroX is an indole-derived antioxidant that specifically targets mitochondria. We aimed to evaluate the therapeutic potential and related molecular mechanisms of NecroX in preclinical models of fatal lung injury. We investigated the therapeutic effects of NecroX on two different experimental models of lung injury induced by polyhexamethylene guanidine (PHMG) and bleomycin, respectively. We also performed transcriptome analysis of lung tissues from PHMG-exposed mice and compared the expression profiles with those from dozens of bleomycin-induced fibrosis public data sets. Respiratory exposure to PHMG and bleomycin led to fatal lung injury manifesting extensive inflammation followed by fibrosis. These specifically affected mitochondria regarding biogenesis, mitochondrial DNA integrity, and the generation of mitochondrial reactive oxygen species in various cell types. NecroX significantly improved the pathobiologic features of the PHMG- and bleomycin-induced lung injuries through regulation of mitochondrial oxidative stress. Endoplasmic reticulum stress was also implicated in PHMG-associated lung injuries of mice and humans, and NecroX alleviated PHMG-induced lung injury and the subsequent fibrosis, in part, via regulation of endoplasmic reticulum stress in mice. Gene expression profiles of PHMG-exposed mice were highly consistent with public data sets of bleomycin-induced lung injury models. Pathways related to mitochondrial activities, including oxidative stress, oxidative phosphorylation, and mitochondrial translation, were upregulated, and these patterns were significantly reversed by NecroX. These findings demonstrate that NecroX possesses therapeutic potential for fatal lung injury in humans.


Asunto(s)
Lesión Pulmonar , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Guanidina/farmacología , Pulmón/patología , Guanidinas/farmacología , Estrés Oxidativo , Fibrosis , Bleomicina/farmacología , Estrés del Retículo Endoplásmico
6.
Bioeng Transl Med ; 7(3): e10317, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176607

RESUMEN

The goal of this study was to fabricate bioactive cell-laden biocomposites supplemented with bone-derived decellularized extracellular matrix (dECM) with calcium phosphate ceramic, and to assess the effect of the biocomponents on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs). By evaluating the rheological properties and selecting printing parameters, mechanically stable cell-laden 3D biocomposites with high initial cell-viability (>90%) and reasonable printability (≈0.9) were manufactured. The cytotoxicity of the biocomposites was evaluated via MTT assay and nuclei/F-actin fluorescent analyses, while the osteo/odontogenic differentiation of the hDPSCs was assessed using histological and immunofluorescent analyses and various gene expressions. Alkaline phosphate activity and alizarin red staining results indicate that the dECM-based biocomposites exhibit significantly higher osteogenic activities, including calcification, compared to the collagen-based biocomposites. Furthermore, immunofluorescence images and gene expressions demonstrated upregulation of dentin matrix acidic phosphoprotein-1 and dentin sialophosphoprotein in the dECM-based biocomposites, indicating acceleration of the odontogenic differentiation of hDPSCs in the printed biocomposites. The hDPSC-laden biocomposite was implanted into the subcutaneous region of mice, and the biocomposite afforded clear induction of osteo/odontogenic ectopic hard tissue formation 8 weeks post-transplantation. From these results, we suggest that the hDPSC-laden biocomposite is a promising biomaterial for dental tissue engineering.

7.
Nutrients ; 14(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011092

RESUMEN

Obesity is a global health issue linked to the heightened risk of several chronic diseases. Rhus verniciflua (RV) is a traditional food supplement used for a range of pharmacological effects such as antitumor, antioxidant, α-glucosidase inhibitory effects, hepatitis, and arthritis. Despite the traditional medicinal values, scientific evidence for its application in obesity is inadequate and unclear. Thus, this investigation was designed to evaluate the anti-obesity effects of IBF-R, an RV extract, using a high-fat diet (HFD) model. The study has six groups: chow diet group; chow diet with 80 mg/kg IBF-R; HFD group; IBF-R group with 20, 40, and 80 mg/kg. IBF-R supplementation significantly regulated the weight gain than the HFD fed mice. Further, IBF-R supplementation lowered the expressions of adipogenic transcription factors such as SREBP-1c, C/EBPα, FAS, and PPAR-γ in white adipose tissue (WAT) of diet-induced obese mice. In addition, IBF-R supplementation reduced the lipogenic gene expression while enhancing genes was related to fatty acid oxidation. Obesity is linked to redox-based post-translational modifications (PTMs) of IRE1α such as S-nitrosylation, endoplasmic reticulum (ER) stress, and chronic metabolic inflammation. The administration of IBF-R inhibits these PTMs. Notably, IBF-R administration significantly enhanced the expression of AMPK and sirtuin 1 in WAT of HFD-fed mice. Together, these findings reveal the IRE1α S-nitrosylation-inflammation axis as a novel mechanism behind the positive implications of IBF-R on obesity. In addition, it lays a firm foundation for the development of Rhus verniciflua extract as a functional ingredient in the food and pharmaceutical industries.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Obesidad/metabolismo , Extractos Vegetales/administración & dosificación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Rhus/química , Adipogénesis/efectos de los fármacos , Animales , Fármacos Antiobesidad , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Aumento de Peso/efectos de los fármacos
8.
Cells ; 10(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066056

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide with limited treatment options. Biomarker-based active phenolic flavonoids isolated from medicinal plants might shed some light on potential therapeutics for treating HCC. 3,3'-diindolylmethane (DIM) is a unique biologically active dimer of indole-3-carbinol (I3C), a phytochemical compound derived from Brassica species of cruciferous vegetables-such as broccoli, kale, cabbage, and cauliflower. It has anti-cancer effects on various cancers such as breast cancer, prostate cancer, endometrial cancer, and colon cancer. However, the molecular mechanism of DIM involved in reducing cancer risk and/or enhancing therapy remains unknown. The aim of the present study was to evaluate anti-cancer and therapeutic effects of DIM in human hepatoma cell lines Hep3B and HuhCell proliferation was measured with MTT and trypan blue colony formation assays. Migration, invasion, and apoptosis were measured with Transwell assays and flow cytometry analyses. Reactive oxygen species (ROS) intensity and the loss in mitochondrial membrane potential of Hep3B and Huh7 cells were determined using dihydroethidium (DHE) staining and tetramethylrhodamine ethyl ester dye. Results showed that DIM significantly suppressed HCC cell growth, proliferation, migration, and invasion in a concentration-dependent manner. Furthermore, DIM treatment activated caspase-dependent apoptotic pathway and suppressed epithelial-mesenchymal transition (EMT) via ER stress and unfolded protein response (UPR). Taken together, our results suggest that DIM is a potential anticancer drug for HCC therapy by targeting ER-stress/UPR.


Asunto(s)
Anticarcinógenos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Indoles/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Separación Celular , Citometría de Flujo , Alimentos , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Invasividad Neoplásica , Especies Reactivas de Oxígeno , Respuesta de Proteína Desplegada
9.
PLoS One ; 16(4): e0250354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33872333

RESUMEN

Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.


Asunto(s)
Estreñimiento/terapia , Tránsito Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Lactobacillus plantarum/fisiología , Laxativos/farmacología , Metagenoma , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Actinobacteria/aislamiento & purificación , Animales , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/aislamiento & purificación , Bisacodilo/farmacología , Estreñimiento/inducido químicamente , Estreñimiento/microbiología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Heces/microbiología , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Firmicutes/aislamiento & purificación , Tránsito Gastrointestinal/fisiología , Expresión Génica/efectos de los fármacos , Calor , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/microbiología , Loperamida/efectos adversos , Masculino , Viabilidad Microbiana , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/aislamiento & purificación
10.
Drug Des Devel Ther ; 11: 2605-2619, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919711

RESUMEN

Manganese (Mn) is an important mineral element required in trace amounts for development of the human body, while over- or chronic-exposure can cause serious organ toxicity. The current study was designed to evaluate the protective role of quercetin (Qct) against Mn-induced toxicity in the liver, kidney, lung, and hematological parameters in acute and subchronic rat models. Male Sprague Dawley rats were divided into control, Mn (100 mg/kg for acute model and 15 mg/kg for subchronic model), and Mn + Qct (25 and 50 mg/kg) groups in both acute and subchronic models. Our result revealed that Mn + Qct groups effectively reduced Mn-induced ALT, AST, and creatinine levels. However, Mn + Qct groups had effectively reversed Mn-induced alteration of complete blood count, including red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets, and white blood cells. Meanwhile, the Mn + Qct groups had significantly decreased neutrophil and eosinophil and increased lymphocyte levels relative to the Mn group. Additionally, Mn + Qct groups showed a beneficial effect against Mn-induced macrophages and neutrophils. Our result demonstrated that Mn + Qct groups exhibited protective effects on Mn-induced alteration of GRP78, CHOP, and caspase-3 activities. Furthermore, histopathological observation showed that Mn + Qct groups effectively counteracted Mn-induced morphological change in the liver, kidney, and lung. Moreover, immunohistochemically Mn + Qct groups had significantly attenuated Mn-induced 8-oxo-2'-deoxyguanosine immunoreactivity. Our study suggests that Qct could be a substantially promising organ-protective agent against toxic Mn effects and perhaps against other toxic metal chemicals or drugs.


Asunto(s)
Antioxidantes/toxicidad , Manganeso/toxicidad , Quercetina/farmacología , Animales , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Manganeso/administración & dosificación , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley
11.
Int J Mol Sci ; 18(2)2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28146110

RESUMEN

Manganese (Mn) is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson's disease (PD)-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES) on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD) male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and reducing power capacity (RPC) assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH) level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm) and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg) to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Euphorbia/química , Manganeso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Exudados de Plantas/farmacología , Animales , Antioxidantes/química , Biomarcadores , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Flavonoides/química , Humanos , Masculino , Manganeso/toxicidad , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fenol/química , Exudados de Plantas/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
12.
BMC Res Notes ; 10(1): 77, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28143589

RESUMEN

BACKGROUND: The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl4)-induced liver stress model. METHODS: Acute hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. RESULTS: At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl4-treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl4-treated group (p < 0.05), leading to a reduced lipid peroxidase level. CONCLUSION: Our data suggested that CLL extract and curcumin protect the liver from acute CCl4-induced injury in a rodent model by suppressing hepatic oxidative stress. Therefore, CLL extract and curcumin are potential therapeutic antioxidant agents against acute hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Curcuma/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colesterol/análisis , Cromatografía Líquida de Alta Presión , Curcumina/farmacología , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lípidos/análisis , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Ratas Sprague-Dawley , Rizoma/química , Superóxido Dismutasa/metabolismo , Triglicéridos/análisis
13.
Sci Rep ; 6: 32229, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27576594

RESUMEN

Diet-induced obesity is a major contributing factor to the progression of hepatic insulin resistance. Increased free fatty acids in liver enhances endoplasmic reticulum (ER) stress and production of reactive oxygen species (ROS), both are directly responsible for dysregulation of hepatic insulin signaling. BI-1, a recently studied ER stress regulator, was examined to investigate its association with ER stress and ROS in insulin resistance models. To induce obesity and insulin resistance, BI-1 wild type and BI-1 knock-out mice were fed a high-fat diet for 8 weeks. The BI-1 knock-out mice had hyperglycemia, was associated with impaired glucose and insulin tolerance under high-fat diet conditions. Increased activity of NADPH-dependent CYP reductase-associated cytochrome p450 2E1 (CYP2E1) and exacerbation of ER stress in the livers of BI-1 knock-out mice was also observed. Conversely, stable expression of BI-1 in HepG2 hepatocytes was shown to reduce palmitate-induced ER stress and CYP2E1-dependent ROS production, resulting in the preservation of intact insulin signaling. Stable expression of CYP2E1 led to increased ROS production and dysregulation of insulin signaling in hepatic cells, mimicking palmitate-mediated hepatic insulin resistance. We propose that BI-1 protects against obesity-induced hepatic insulin resistance by regulating CYP2E1 activity and ROS production.


Asunto(s)
Citocromo P-450 CYP2E1/genética , Resistencia a la Insulina , Proteínas de la Membrana/fisiología , Animales , Glucemia , Citocromo P-450 CYP2E1/metabolismo , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Humanos , Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/sangre , Obesidad/enzimología , Obesidad/etiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
14.
BMC Complement Altern Med ; 16(1): 316, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561811

RESUMEN

BACKGROUND: Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. METHODS: Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. RESULT: We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. CONCLUSIONS: Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Curcumina/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Tetracloruro de Carbono/toxicidad , Curcuma/química , Curcumina/química , Glutatión/análisis , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Extractos Vegetales/química , Sustancias Protectoras/química , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
15.
Sci Rep ; 6: 27799, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27297735

RESUMEN

In this study, we explored the effects of Bax Inhibitor-1 (BI-1) on ApoB aggregation in high-fat diet (HFD)-induced hepatic lipid accumulation. After 1 week on a HFD, triglycerides and cholesterol accumulated more in the liver and were not effectively secreted into the plasma, whereas after 8 weeks, lipids were highly accumulated in both the liver and plasma, with a greater effect in BI-1 KO mice compared with BI-1 WT mice. ApoB, a lipid transfer protein, was accumulated to a greater extent in the livers of HFD-BI-1 KO mice compared with HFD-BI-1 WT mice. Excessive post-translational oxidation of protein disulfide isomerase (PDI), intra-ER ROS accumulation and folding capacitance alteration were also observed in HFD-BI-1 KO mice. Higher levels of endoplasmic reticulum (ER) stress were consistently observed in KO mice compared with the WT mice. Adenovirus-mediated hepatic expression of BI-1 in the BI-1 KO mice rescued the above phenotypes. Our results suggest that BI-1-mediated enhancement of ApoB secretion regulates hepatic lipid accumulation, likely through regulation of ER stress and ROS accumulation.


Asunto(s)
Apolipoproteínas B/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Dieta Alta en Grasa , Disulfuros/metabolismo , Estrés del Retículo Endoplásmico , Ácidos Grasos/biosíntesis , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo
16.
Int J Mol Sci ; 17(3): 327, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26950115

RESUMEN

The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Calcio/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Glutatión/metabolismo , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Hepatopatías/metabolismo , Hepatopatías/patología , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología
17.
Clin Hypertens ; 22: 10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27092268

RESUMEN

BACKGROUND: Hypertensive crisis is a medical emergency that can cause acute damage to multiple end-organs. However, relatively little is known on the etiology, treatment, and outcomes of hypertensive crisis in Korean children. The aim of this study was to determine the etiologies and efficacy of drugs for hypertensive crisis in children during the past 5 years at a single center in Korea. METHODS: We analyzed data from 51 children with hypertensive crisis during the period between January 1, 2010 and April 1, 2014. The patients were divided into two groups: those diagnosed with a hypertensive emergency (hypertension with organ injury, n = 31) and those diagnosed with a hypertensive urgency (hypertension without organ injury, n = 20). Baseline etiologies and risk factors were compared between the two groups. In addition, systolic and diastolic blood pressures were evaluated at 1, 2, 4, and 5 hours after the administration of intravenous antihypertensive drugs. RESULTS: Kidney injury and cancer were the common causes in patients with hypertensive crisis. Cardiovascular complications (cardiac hypertrophy) (p = 0.002), central nervous system complications (p = 0.004), and retinopathy (p = 0.034) were more frequently observed in children with hypertensive emergency than those with hypertensive urgency. However, the proportion of renal complications was similar in both groups. Hydralazine was most commonly used in both groups to control acute increasing blood pressure at first. However, it was often ineffective for controlling abrupt elevated blood pressure. Therefore, intravenous antihypertensive drugs were changed from hydralazine to nicardipine, labetalol, or nitroprusside to control the high blood pressure in 45.1 % of the patients. Particularly, in patients with hypertensive crisis, there was no significant difference in reduction of systolic and diastolic blood pressure and in improvement of clinical outcomes between nicardipine and labetalol administration. CONCLUSION: Close blood pressure monitoring and careful examinations should be mandatory in children with underlying disease, especially renal diseases and cancer. Furthermore, both nicardipine and labetalol may be effective antihypertensive drug in lowering high blood pressure in children with hypertensive crisis.

18.
Sci Rep ; 4: 5194, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24899098

RESUMEN

A recently studied endoplasmic reticulum (ER) stress regulator, Bax inhibitor-1 (BI-1) plays a regulatory role in mitochondrial Ca(2+) levels. In this study, we identified ER-resident and mitochondria-associated ER membrane (MAM)-resident populations of BI-1. ER stress increased mitochondrial Ca(2+) to a lesser extent in BI-1-overexpressing cells (HT1080/BI-1) than in control cells, most likely as a result of impaired mitochondrial Ca(2+) intake ability and lower basal levels of intra-ER Ca(2+). Moreover, opening of the Ca(2+)-induced mitochondrial permeability transition pore (PTP) and cytochrome c release were regulated by BI-1. In HT1080/BI-1, the basal mitochondrial membrane potential was low and also resistant to Ca(2+) compared with control cells. The activity of the mitochondrial membrane potential-dependent mitochondrial Ca(2+) intake pore, the Ca(2+) uniporter, was reduced in the presence of BI-1. This study also showed that instead of Ca(2+), other cations including K(+) enter the mitochondria of HT1080/BI-1 through mitochondrial Ca(2+)-dependent ion channels, providing a possible mechanism by which mitochondrial Ca(2+) intake is reduced, leading to cell protection. We propose a model in which BI-1-mediated sequential regulation of the mitochondrial Ca(2+) uniporter and Ca(2+)-dependent K(+) channel opening inhibits mitochondrial Ca(2+) intake, thereby inhibiting PTP function and leading to cell protection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Calcio/metabolismo , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proliferación Celular , Citocromos c/metabolismo , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Poro de Transición de la Permeabilidad Mitocondrial , Células Tumorales Cultivadas
19.
Am J Chin Med ; 42(3): 639-49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24871656

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is caused by the hepatic accumulation of saturated fatty acids involving the ER stress mechanism. Secretion of apo lipid carrier proteins and their binding to hepatic TG and cholesterol are affected by ER stress. This study was designed to identify ER stress regulators with potential effects against hepatic lipid accumulation. Ixeris dentata (IXD) is a traditional herbal remedy for indigestion, hepatitis, and diabetes used in Korea, Japan, and China. To examine the regulatory effects of IXD against hepatic lipid accumulation and elucidate its suggested mechanism of ER stress, HepG2 hepatocytes were treated with IXD extract in the presence of palmitate. While palmitate induced an ER stress response in hepatocytes, as indicated by the upregulation of PERK, increased eukaryotic initiation factor 2α (eIF2α) phosphorylation, enhanced expression of GADD153/C/EBP homologous protein (CHOP), and reduced secretion of apoB resulting in hepatic cellular accumulation of triglycerides (TG) and cholesterol, IXD extract significantly inhibited the lipid accumulation and PERK/eIF2α/CHOP-axis of the ER stress response. The inhibition of the PERK/eIF2α/CHOP signaling pathway by IXD in palmitate-treated cells suggests that IXD regulates hepatic dyslipidemia through the regulation of ER stress.


Asunto(s)
Apolipoproteínas B/metabolismo , Asteraceae/química , Colesterol/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/farmacología , Triglicéridos/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Células Hep G2 , Humanos , Palmitatos/farmacología , Extractos Vegetales/aislamiento & purificación , Factor de Transcripción CHOP/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , eIF-2 Quinasa/metabolismo
20.
BMB Rep ; 47(7): 393-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24314142

RESUMEN

The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial Ca2+ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas de la Membrana/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Receptor fas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Anticuerpos/inmunología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Calcio/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética , Receptor fas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA