Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS One ; 19(5): e0298487, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781174

RESUMEN

Cannabis sativa (Hemp) seeds are used widely for cosmetic and therapeutic applications, and contain peptides with substantial therapeutic potential. Two key peptides, WVYY and PSLPA, extracted from hemp seed proteins were the focal points of this study. These peptides have emerged as pivotal contributors to the various biological effects of hemp seed extracts. Consistently, in the present study, the biological effects of WVYY and PSLPA were explored. We confirmed that both WVYY and PSLPA exert antioxidant and antibacterial effects and promote wound healing. We hypothesized the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in these observed effects, given that Nrf2 is reported to be a central player in the regulation of these observed effects. Molecular-level investigations unequivocally confirmed the role of the Nrf2 signaling pathway in the observed effects of WVYY and PSLPA, specifically their antioxidant effects. Our study highlights the therapeutic potential of hemp seed-derived peptides WVYY and PSLPA, particularly with respect to their antioxidant effects, and provides a nuanced understanding of their effects. Further, our findings can facilitate the investigation of targeted therapeutic applications and also underscore the broader significance of hemp extracts in biological contexts.


Asunto(s)
Antioxidantes , Cannabis , Queratinocitos , Factor 2 Relacionado con NF-E2 , Péptidos , Semillas , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Cannabis/química , Humanos , Transducción de Señal/efectos de los fármacos , Semillas/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Proteínas de Plantas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Korean J Fam Med ; 45(3): 157-163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282438

RESUMEN

BACKGROUND: Evidence on the association between obesity parameters, including body mass index (BMI) and waist circumference (WC), and osteoarthritis is limited. This study aimed to investigate these associations in Korean adults. METHODS: This nationwide cross-sectional study used data from 24,101 adults aged ≥19 years who participated in the Korea National Health and Nutrition Examination Survey 2016-2020. Odds ratios (ORs) and 95% confidence intervals (CIs) for osteoarthritis according to BMI and WC were analyzed using multivariable logistic regression analyses. RESULTS: The prevalence of osteoarthritis was higher in individuals with general (10.0%) and abdominal obesity (12.8%) compared with those without. Greater BMI and WC were associated with a higher prevalence (P<0.001) and risk of osteoarthritis (Model 3, P for trend <0.001). Individuals with general and abdominal obesity were associated with a 1.50-fold (OR, 1.50; 95% CI, 1.35-1.67) and 1.64-fold (OR, 1.64; 95% CI, 1.47-1.84) increased risk of osteoarthritis, compared with those without. Similar associations were observed in subgroups according to age, sex, smoking status, and presence of diabetes mellitus. The odds of osteoarthritis 1.73-fold increased (OR, 1.73; 95% CI, 1.53-1.95) in individuals with both general and abdominal obesity compared with those without any of them. CONCLUSION: Greater BMI, WC, and general and abdominal obesity were associated with an increased risk of osteoarthritis in Korean adults. Appropriate management of abdominal and general obesity may be important to reduce the risk of osteoarthritis.

3.
Life Sci ; 334: 122227, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926298

RESUMEN

The inhibition of cell death, perturbation of microtubule dynamics, and acceleration of Wnt/ß-catenin/epithelial-mesenchymal transition (EMT) signaling are fundamental processes in the progression and metastasis of colorectal cancer (CRC). To explore the role of 2-stearoxyphenethyl phosphocholine (stPEPC), an alkylphospholipid-based compound, in CRC, we conducted an MTT assay, cell cycle analysis, western blot analysis, immunoprecipitation, immunofluorescence staining, Annexin V/propidium iodide double staining, small interfering RNA gene silencing, a wound-healing assay, an invasion assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in the human CRC cell lines HT29 and HCT116. stPEPC showed anti-proliferative properties and mitotic cell accumulation via upregulated phosphorylation of BUBR1 and an association between mitotic arrest deficiency 2 (MAD2) and cell division cycle protein 20 homolog (CDC20). These results suggest that activation of the mitotic checkpoint complex and tubulin polymerization occurred, resulting in mitotic catastrophe in HT29 and HCT116 cells. In addition, stPEPC attenuated cell migration and invasion by regulating proteins mediated by EMT, such as E-cadherin and occludin. stPEPC altered the protein expression of Wnt3a and phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), glycogen synthase kinase 3ß (GSK3ß), and ß-catenin as well as their target genes, including cMyc and cyclin D1, in CRC cells. Thus, stPEPC may be useful for developing new drugs to treat human CRC.


Asunto(s)
Neoplasias Colorrectales , Fosforilcolina , Humanos , Línea Celular Tumoral , beta Catenina/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias Colorrectales/patología , Vía de Señalización Wnt/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Microtúbulos/metabolismo , Proliferación Celular/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo
4.
Life (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36836780

RESUMEN

Gynostemma pentaphyllum (GP) is widely used in herbal medicine. In this study, we developed a method for the large-scale production of GP cells using plant tissue culture techniques combined with bioreactors. Six metabolites (uridine, adenosine, guanosine, tyrosine, phenylalanine, and tryptophan) were identified in GP extracts. Transcriptome analyses of HaCaT cells treated with GP extracts using three independent methods were conducted. Most differentially expressed genes (DEGs) from the GP-all condition (combination of three GP extracts) showed similar gene expression on treatment with the three individual GP extracts. The most significantly upregulated gene was LTBP1. Additionally, 125 and 51 genes were upregulated and downregulated, respectively, in response to the GP extracts. The upregulated genes were associated with the response to growth factors and heart development. Some of these genes encode components of elastic fibers and the extracellular matrix and are associated with many cancers. Genes related to folate biosynthesis and vitamin D metabolism were also upregulated. In contrast, many downregulated genes were associated with cell adhesion. Moreover, many DEGs were targeted to the synaptic and neuronal projections. Our study has revealed the functional mechanisms of GP extracts' anti-aging and photoprotective effects on the skin using RNA sequencing.

5.
J Enzyme Inhib Med Chem ; 37(1): 1257-1277, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35484863

RESUMEN

Identification of highly selective type II kinase inhibitors is described. Two different chiral peptidomimetic scaffolds were introduced on the tail region of non-selective type II kinase inhibitor GNF-7 to enhance the selectivity. Kinome-wide selectivity profiling analysis showed that type II kinase inhibitor 7a potently inhibited Lck kinase with great selectivity (IC50 of 23.0 nM). It was found that 7a and its derivatives possessed high selectivity for Lck over even structurally conserved all Src family kinases. We also observed that 7a inhibited Lck activation in Jurkat T cells. Moreover, 7a was found to alleviate clinical symptoms in DSS-induced colitis mice. This study provides a novel insight into the design of selective type II kinase inhibitors by adopting chiral peptidomimetic moieties on the tail region.


Asunto(s)
Peptidomiméticos , Animales , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Ratones , Peptidomiméticos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas
6.
Pharmaceutics ; 13(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34834209

RESUMEN

The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.

7.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831003

RESUMEN

Previously, we discovered that 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52), a synthetic phenoxypyrimidine urea derivative, acts as a growth inhibitor of various cancer cell types. In this study, we elucidated the antiproliferative properties of AFK-D52 and underlying mechanisms in non-small cell lung cancer (NSCLC) cells and an A549 xenograft animal model. AKF-D52 was found to induce both caspase-dependent and -independent apoptotic cell death. Furthermore, the mitochondrial component of the AKF-D52-induced apoptosis mechanism involves a reduction in mitochondrial membrane potential and regulation in B cell lymphoma-2 family protein expression. Moreover, AKF-D52 activates the extrinsic pathway through up-regulated expression of death receptor 3 and Fas and then the formation of a death-inducing signaling complex. AKF-D52 also induced autophagy by increasing acidic vesicular organelle formation and microtubule-associated protein 1A/1B-light chain 3-II levels and reducing p62 levels. Notably, pretreatment with autophagy inhibitors enhanced AKF-D52-induced cell death, indicating that the induced autophagy is cytoprotective. AKF-D52 treatment also triggered reactive oxygen species (ROS) production in NSCLC cells, whereas the antioxidant α-tocopherol abolished AKF-D52-induced cell death. In a xenograft lung cancer mouse model, AKF-D52 administration attenuated tumor growth by inducing apoptosis and autophagy in tumor tissues. Collectively, our data indicate that AKF-D52-induced ROS production plays a role in mediating apoptosis and cytoprotective autophagy in NSCLC.

8.
Med Phys ; 48(9): 5327-5342, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34224166

RESUMEN

PURPOSE: Recently, high-precision radiotherapy systems have been developed by integrating computerized tomography or magnetic resonance imaging to enhance the precision of radiotherapy. For integration with additional imaging systems in a limited space, miniaturization and weight reduction of the linear accelerator (linac) system have become important. The aim of this work is to develop a compact medical linac based on 9.3 GHz X-band RF technology instead of the S-band RF technology typically used in the radiotherapy field. METHODS: The accelerating tube was designed by 3D finite-difference time-domain and particle-in-cell simulations because the frequency variation resulting from the structural parameters and processing errors is relatively sensitive to the operating performance of the X-band linac. Through the 3D simulation of the electric field distribution and beam dynamics process, we designed an accelerating tube to efficiently accelerate the electron beam and used a magnetron as the RF source to miniaturize the entire linac. In addition, a side-coupled structure was adopted to design a compact linac to reduce the RF power loss. To verify the performance of the linac, we developed a beam diagnostic system to analyze the electron beam characteristics and a quality assurance (QA) experimental environment including 3D lateral water phantoms to analyze the primary performance parameters (energy, dose rate, flatness, symmetry, and penumbra) The QA process was based on the standard protocols AAPM TG-51, 106, 142 and IAEA TRS-398. RESULTS: The X-band linac has high shunt impedance and electric field strength. Therefore, even though the length of the accelerating tube is 37 cm, the linac could accelerate an electron beam to more than 6 MeV and produce a beam current of more than 90 mA. The transmission ratio is measured to be approximately 30% ~ 40% when the electron gun operates in the constant emission region. The percent depth dose ratio at the measured depths of 10 and 20 cm was approximately 0.572, so we verified that the photon beam energy was matched to approximately 6 MV. The maximum dose rate was measured as 820 cGy/min when the source-to-skin distance was 80 cm. The symmetry was smaller than the QA standard and the flatness had a higher than standard value due to the flattening filter-free beam characteristics. In the case of the penumbra, it was not sufficiently steep compared to commercial equipment, but it could be compensated by improving additional devices such as multileaf collimator and jaw. CONCLUSIONS: A 9.3 GHz X-band medical linac was developed for high-precision radiotherapy. Since a more precise design and machining process are required for X-band RF technology, this linac was developed by performing a 3D simulation and ultraprecision machining. The X-band linac has a short length and a compact volume, but it can generate a validated therapeutic beam. Therefore, it has more flexibility to be coupled with imaging systems such as CT or MRI and can reduce the bore size of the gantry. In addition, the weight reduction can improve the mechanical stiffness of the unit and reduce the mechanical load.


Asunto(s)
Electrones , Aceleradores de Partículas , Simulación por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen
9.
Biomed Pharmacother ; 142: 111961, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34329824

RESUMEN

We previously reported the anticancer activity of 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (OZ-001), a T-type calcium channel (TTCC) blocker, against non-small cell lung cancer (NSCLC) in vitro and in vivo. Here, we evaluated the synergistic effect of OZ-001 and cisplatin on A549 human lung cancer cells and A549 xenograft mice. Our study demonstrated that treatment with OZ-001 and cisplatin sensitized A549 cells to cisplatin and significantly inhibited cell growth, increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and induced poly (ADP-ribose) polymerase (PARP) cleavage in A549 cells and an A549 xenograft tumor mouse model. Moreover, our findings showed that mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and signal transducer and activator of transcription (STAT3) inactivation was required for apoptosis induced by the combination of OZ-001 and cisplatin in in vitro and in vivo experiments. Our results suggest that combined treatment with OZ-001 and cisplatin could potentiate antiproliferative effects via suppression of the mTOR/p70S6K and STAT3 pathways and may be considered a potential therapeutic agent for NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Cisplatino/administración & dosificación , Sinergismo Farmacológico , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Rev Sci Instrum ; 92(2): 024103, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648097

RESUMEN

A compact X-band linear accelerator (LINAC) system equipped with a small and lightweight magnetron was constructed to develop a high-precision image-guided radiotherapy system. The developed LINAC system was installed in an O-ring gantry where cone-beam computed tomography (CBCT) was embedded. When the O-arm gantry is rotated, an x-ray beam is stably generated, which resulted from the stable transmission of radio frequency power into the X-band LINAC system. Quality assurance (QA) tests, including mechanical and dosimetry checks, were carried out to ensure safety and operation performance according to the American Association of Physicists in Medicine's TG-51, 142, an international standard protocol established by accredited institutions. In addition, delivery QA of the radiotherapy planning system was conducted to verify intensity-modulated radiotherapy techniques. Therefore, it was demonstrated that the developed X-band LINAC system mounted on the O-arm gantry proved to be valid and reliable for potential use in CBCT image-guided radiation therapy.


Asunto(s)
Aceleradores de Partículas/instrumentación , Radioterapia/instrumentación , Rotación , Diseño de Equipo
11.
Bioorg Chem ; 103: 104121, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745753

RESUMEN

A series of diarylurea derivatives comprising 2,4-diarylpyrimidines were synthesized based on a combination of postulated molecular hybridization design and failed-ligands repurposing approaches, which enabled the discovery of novel potential antiproliferative agents. Towards credible biological evaluation, an in vitro anticancer activity assay was conducted employing a library of 60 cancer cell lines constituting nine panels representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. The results revealed high effectiveness and broad-spectrum anticancer activity of compounds 4m and 4g. Five-dose assay of compounds 4m and 4g proved their high potency that surpassed that of four standard kinase inhibitors FDA-approved anticancer drugs against many cancer cells. Towards the identification of their molecular target, screening of kinase inhibitory profile employing a panel of 51 kinases involved in cancer revealed inhibition of several kinases from the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) kinase family, which might mediate, at least in part, the antiproliferative activity. Molecular docking of 4g into the crystal structure of the Feline McDonough Sarcoma (FMS) kinase predicted that it binds to a pocket formed by the juxtamembrane domain, the catalytic loop, and the αE helix, thus stabilizing the inhibited conformation of the kinase. Flow cytometric study of the cytotoxic effects of compound 4g in A549 cells showed it induces dose- and time-dependent apoptotic events leading to cell death. Collectively, this work presents compound 4g as a potential broad-spectrum anticancer agent against multiple cancer types.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Pirimidinas/farmacología , Urea/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Estructura Molecular , Pirimidinas/química , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
12.
J Clin Med ; 9(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150979

RESUMEN

We previously reported that 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (KCP10043F) can induce G1-phase arrest and synergistic cell death in combination with etoposide in lung cancer cells. Here, we investigated the underlying mechanism by which KCP10043F induces cell death in non-small cell lung cancer (NSCLC). Propidium iodide (PI) and annexin V staining revealed that KCP10043F-induced cytotoxicity was caused by apoptosis. KCP10043F induced a series of intracellular events: (1) downregulation of Bcl-2 and Bcl-xL and upregulation of Bax and cleaved Bid; (2) loss of mitochondrial membrane potential; (3) increase of cytochrome c release; (4) cleavage of procaspase-8, procaspase-9, procaspase-3, and poly (ADP-ribose) polymerase (PARP). In addition, KCP10043F exhibited potent inhibitory effects on constitutive or interleukin-6 (IL-6)-induced signal transducer and activator of transcription (STAT3) phosphorylation and STAT3-regulated genes including survivin, Mcl-1, and cyclin D1. Furthermore, STAT3 overexpression attenuated KCP10043F-induced apoptosis and the cleavage of caspase-9, caspase-3, and PARP. Docking analysis disclosed that KCP10043F could bind to a pocket in the SH2 domain of STAT3 and prevent STAT3 phosphorylation. The oral administration of KCP10043F decreased tumor growth in an A549 xenograft mouse model, as associated with the reduced phosphorylated STAT3, survivin, Mcl-1, and Bcl-2 expression and increased TUNEL staining and PARP cleavage in tumor tissues. Collectively, our data suggest that KCP10043F suppresses NSCLC cell growth through apoptosis induction via STAT3 inactivation.

13.
Cancers (Basel) ; 11(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816985

RESUMEN

We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4H-chromen-2-yl)-N-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staining revealed that TMS-TMF-4f-induced cytotoxicity was caused by the induction of apoptosis in both HeLa and CaSki cervical cancer cells. The compound TMS-TMF-4f enhanced the activation of caspase-3, caspase-8, and caspase-9 and regulated Bcl-2 family proteins, which led to mitochondrial membrane potential (MMP) loss and resulted in the release of cytochrome c and Smac/DIABLO into the cytosol. Also, TMS-TMF-4f suppressed both constitutive and IL-6-inducible levels of phosphorylated STAT3 (p-STAT3) and associated proteins such as Mcl-1, cyclin D1, survivin, and c-Myc in both cervical cancer cells. STAT-3 overexpression completely ameliorated TMS-TMF-4f-induced apoptotic cell death and PARP cleavage. Docking analysis revealed that TMS-TMF-4f could bind to unphosphorylated STAT3 and inhibit its interconversion to the activated form. Notably, intraperitoneal administration of TMS-TMF-4f (5, 10, or 20 mg/kg) decreased tumor growth in a xenograft cervical cancer mouse model, demonstrated by the increase in TUNEL staining and PARP cleavage and the reduction in p-STAT3, Mcl-1, cyclin D1, survivin, and c-Myc expression levels in tumor tissues. Taken together, our results suggest that TMS-TMF-4f may potentially inhibit human cervical tumor growth through the induction of apoptosis via STAT3 suppression.

14.
Molecules ; 24(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635244

RESUMEN

Chrysanthemum boreale is a plant widespread in East Asia, used in folk medicine to treat various disorders, such as pneumonia, colitis, stomatitis, and carbuncle. Whether the essential oil from C. boreale (ECB) and its active constituents have anti-proliferative activities in lung cancer is unknown. Therefore, we investigated the cytotoxic effects of ECB in A549 and NCI-H358 human lung cancer cells. Culture of A549 and NCI-H358 cells with ECB induced apoptotic cell death, as revealed by an increase in annexin V staining. ECB treatment reduced mitochondrial membrane potential (MMP), disrupted the balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins, and activated caspase-8, -9, and -3, as assessed by western blot analysis. Interestingly, pretreatment with a broad-spectrum caspase inhibitor (z-VAD-fmk) significantly attenuated ECB-induced apoptosis. Furthermore, gas chromatography-mass spectrometry (GC/MS) analysis of ECB identified six compounds. Among them, ß-caryophyllene exhibited a potent anti-proliferative effect, and thus was identified as the major active compound. ß- Caryophyllene induced G1 cell cycle arrest by downregulating cyclin D1, cyclin E, cyclin-dependent protein kinase (CDK) -2, -4, and -6, and RB phosphorylation, and by upregulating p21CIP1/WAF1 and p27KIP1. These results indicate that ß-caryophyllene exerts cytotoxic activity in lung cancer cells through induction of cell cycle arrest.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chrysanthemum/química , Neoplasias Pulmonares/metabolismo , Sesquiterpenos Policíclicos/farmacología , Células A549 , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aceites Volátiles/farmacología
15.
Environ Sci Pollut Res Int ; 26(10): 9619-9631, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30729441

RESUMEN

The objective of this study was to investigate the concentration distribution of indoor air pollutants in taxis and ships (passengers) which are frequently used for public transportation and recreational activities in South Korea. In addition, it aimed to assess air quality factors to establish and evaluate the health risks of exposure to polluted indoor air. Particulate matter (PM10) concentrations were not affected by the number of passengers, time of day, and driving characteristics because there were only a few passengers (2 to 4 people) and the space was confined. In the ships, indoor air pollutants responded more sensitively to the operation characteristics depending on the time of sailing (i.e., anchoring and departure, movement of vehicles on the ship, movement of passengers, combustion in the shop, and ventilation) than to the number of people boarding and alighting. The carbon dioxide concentrations in different ship rooms did not vary according to season and degree of congestion; however, there were differences between different ships. These differences may result from the size, type, and operating characteristics of the ships. Volatile organic compounds (VOCs) and aldehydes in new taxis exceeded the standard levels during summer. VOC concentrations in ships were particularly high during summer when the outdoor temperature was high. Similar observations were made for other means of transportation. The risk assessment depended on the means of transportation and demonstrated that mortality risks due to PM10 and excess carcinogenic and non-carcinogenic risks from VOCs and aldehydes were within safety levels.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire , Contaminación del Aire Interior/análisis , Aldehídos/análisis , Automóviles/estadística & datos numéricos , Humanos , República de Corea , Medición de Riesgo , Estaciones del Año , Navíos/estadística & datos numéricos , Ventilación
16.
Eur J Med Chem ; 161: 559-580, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396104

RESUMEN

Cancer still represents a major global health problem. All currently available anticancer agents have disadvantages like resistance or side effects. Therefore, introduction of novel anticancer agents is needed. Intrigued by the high success rate for natural products-based drug discovery, we designed and synthesized antiproliferative chemical entities as hybrids of two natural products; 3,5,4'-trimethoxystilbene and 5,6,7-trimethoxyflavone. To probe the spectrum of the synthesized compounds, in vitro evaluation was conducted against nine panels representing major cancer diseases. The results revealed the hybrid analogs 4f, 4h, 4k and 4q as promising broad-spectrum anticancer lead compounds eliciting high growth inhibition of several cell lines representing multiple cancers diseases. Evaluation of the promising lead compounds against normal human cell lines suggested a selective cytotoxic effect on cancer cells. Mechanistic investigation of the cytotoxic activity of compound 4f in human cervical cancer HeLa cells showed that it triggers cell death through induction of apoptosis. As a whole, this study presents the natural products hybrid analogs 4f, 4h, 4k and 4q as potential lead compounds for further development of novel anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Flavonas/farmacología , Estilbenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Flavonas/síntesis química , Flavonas/química , Humanos , Estructura Molecular , Estilbenos/síntesis química , Estilbenos/química , Relación Estructura-Actividad
17.
Food Chem Toxicol ; 124: 101-111, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30508562

RESUMEN

In this study, several resveratrol analogs were synthesized and evaluated in search of a more effective anti-proliferative resveratrol analog. Among the evaluated resveratrol analogs, we have identified N-(4-methoxyphenyl)-3,5-dimethoxybenamide (MPDB) as a potent anti-proliferative compound. Treatment with MPDB resulted in G2/M phase cell cycle arrest, which was accompanied by alteration of G2/M-related protein expression and phosphorylation. MPDB-induced G2/M arrest was blocked by transfection of ATM/ATR siRNAs, indicating the critical role of ATM/ATR in G2/M phase arrest. In addition, treatment with MPDB displayed the activation of caspase and decreased Bcl-xl protein expression after 20 h in HeLa cells. Moreover, MPDB increased cytosolic cytochrome c release and Fas and Fas-L protein expression, indicating intrinsic and extrinsic apoptosis pathway, respectively. These results suggest that MPDB is a new and potent compound that induces ATM/ATR-dependent G2/M phase cell cycle arrest and apoptosis, implicating it as a putative candidate in the investment of cervical cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/metabolismo , Femenino , Humanos , Fosforilación , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Proteína bcl-X/metabolismo
18.
Molecules ; 23(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551620

RESUMEN

The natural product 23-hydroxyursolic acid (23-HUA) is a derivative of ursolic acid, which is known to induce cancer cell apoptosis. However, apoptotic effects and mechanisms of 23-HUA have not been well characterized yet. Herein, we investigated the molecular mechanisms of 23-HUA-induced apoptosis in HL-60 human promyelocytic leukemia cells. 23-HUA-treated HL-60 cells showed apoptotic features including internucleosomal DNA condensation and fragmentation as well as externalization of phosphatidylserine residues. 23-HUA induced a series of mitochondrial events including disruption of mitochondrial membrane potential (ΔΨm), cytochrome c and Smac/DIABLO release and loss of balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins in HL-60 cells. In addition, 23-HUA activated caspase-8, caspase-9 and caspase-3. Pretreatment with a broad caspase inhibitor (z-VAD-fmk), a caspase-3 inhibitor (z-DEVD-fmk), and a caspase-8 inhibitor (z-IETD-fmk) significantly attenuated 23-HUA-induced DNA fragmentation. After 23-HUA-induced apoptosis, proteins expression levels of FasL, Fas and FADD constituting the death-inducing signaling complex (DISC) were upregulated in HL-60 cells. Moreover, transfection with Fas or FADD siRNA significantly blocked 23-HUA-induced DNA fragmentation and caspases activation. Taken together, these findings indicate that 23-HUA induces apoptosis in HL-60 human promyelocytic leukemia cells through formation of DISC and caspase-8 activation leading to loss of ΔΨm and caspase-3 activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Araliaceae/química , Caspasa 8/metabolismo , Leucemia Promielocítica Aguda/patología , Corteza de la Planta/química , Tallos de la Planta/química , Triterpenos/farmacología , Receptor fas/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Células HL-60 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Triterpenos/química , Triterpenos/aislamiento & purificación
19.
Molecules ; 23(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404185

RESUMEN

We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKß inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca2+]i). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also µ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.


Asunto(s)
Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HCT116 , Células HT29 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Rodanina/química
20.
Biol Pharm Bull ; 41(11): 1701-1707, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30381670

RESUMEN

Panaxydol, a polyacetylenic compound derived from Panax ginseng has been reported to suppress the growth of cancer cells. However, the molecular mechanisms underlying cell cycle arrest by this compound in non-small cell lung cancer (NSCLC) are unknown. Our study found that panaxydol treatment induced cell cycle arrest at G1 phase in NSCLC cells. The cell cycle arrest was accompanied by down-regulation of the protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E, and decrease in the phosphorylation of retinoblastoma (Rb) protein. Furthermore, up-regulation of cyclin-dependent kinase inhibitor (CDKI) p21CIP1/WAF1 and p27KIP1 was observed in panaxydol-treated NSCLC cells. In addition, panaxydol also induced accumulation of intracellular Ca2+ ([Ca2+]i). (Acetyloxy)methyl 2-({2-[(acetyloxy)methoxy]-2-oxoethyl}[2-(2-{2-[bis({2-[(acetyloxy)methoxy]-2-oxoethyl})amino]phenoxy}ethoxy)phenyl]amino)acetate (BAPTA-AM), the Ca2+ chelator, attenuated not only panaxydol-induced accumulation of [Ca2+]i, but also G1 cell cycle arrest and decrease of CDK6 and cyclin D1 protein expression level. These results demonstrated that the anti-proliferative effects of panaxydol were caused by cell cycle arrest, which is closely linked to the up-regulation of [Ca2+]i and represents a promising approach for the treatment of lung cancer.


Asunto(s)
Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diinos/farmacología , Alcoholes Grasos/farmacología , Fase G1/efectos de los fármacos , Neoplasias Pulmonares/patología , Panax/química , Fitoterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Ciclina E/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Diinos/uso terapéutico , Alcoholes Grasos/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Oncogénicas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA