Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Prod Res ; : 1-8, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913075

RESUMEN

In contrast to normal cells, cancer cells predominantly utilise glycolysis for ATP generation under aerobic conditions, facilitating proliferation and metastasis. Targeting glycolysis is effective for cancer treatment. Prodigiosin (PDG) is a natural compound with various bioactivities, including anticancer effects. However, the precise action mechanisms and molecular targets of PDG, which has demonstrated efficacy in regulating glucose metabolism in cancer cells, remain elusive. Here, we aimed to investigate the anti-cancer activity of PDG and mechanism in cancer metabolism. PDG regulated cancer metabolism by suppressing intracellular ATP production rate and levels. It inhibited glycolysis and mitochondrial oxidative phosphorylation, impeding ATP production dependent on both glycolysis and mitochondrial respiration. Moreover, it inhibited cellular glucose uptake by directly interacting with glucose transporter 1 without affecting its mRNA or protein levels in HCT116 cells. We provide insights into the anti-cancer effects of PDG mediated via cancer metabolism regulation, suggesting its therapeutic potential for cancer.

2.
Front Immunol ; 14: 1168064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435069

RESUMEN

Background: A growing body of evidence suggests that particulate matter (PM10) enters the gastrointestinal (GI) tract directly, causing the GI epithelial cells to function less efficiently, leading to inflammation and an imbalance in the gut microbiome. PM10 may, however, act as an exacerbation factor in patients with inflamed intestinal epithelium, which is associated with inflammatory bowel disease. Objective: The purpose of this study was to dissect the pathology mechanism of PM10 exposure in inflamed intestines. Methods: In this study, we established chronically inflamed intestinal epithelium models utilizing two-dimensional (2D) human intestinal epithelial cells (hIECs) and 3D human intestinal organoids (hIOs), which mimic in vivo cellular diversity and function, in order to examine the deleterious effects of PM10 in human intestine-like in vitro models. Results: Inflamed 2D hIECs and 3D hIOs exhibited pathological features, such as inflammation, decreased intestinal markers, and defective epithelial barrier function. In addition, we found that PM10 exposure induced a more severe disturbance of peptide uptake in inflamed 2D hIECs and 3D hIOs than in control cells. This was due to the fact that it interferes with calcium signaling, protein digestion, and absorption pathways. The findings demonstrate that PM10-induced epithelial alterations contribute to the exacerbation of inflammatory disorders caused by the intestine. Conclusions: According to our findings, 2D hIEC and 3D hIO models could be powerful in vitro platforms for the evaluation of the causal relationship between PM exposure and abnormal human intestinal functions.


Asunto(s)
Células Epiteliales , Intestinos , Humanos , Organoides , Señalización del Calcio , Inflamación , Material Particulado/efectos adversos
3.
J Med Virol ; 95(7): e28894, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386895

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause the hyperproduction of inflammatory cytokines, which have pathological effects in patient including severe or fatal cytokine storms. To characterize the effect of SFTSV and SARS-CoV-2 infection on the production of cytokines in severe fever with thrombocytopenia syndrome (SFTS) and COVID-19 patients, we performed an analysis of cytokines in SFTS and COVID-19 patients and also investigated the role of interleukin-10 (IL-10) in vitro studies: lipopolysaccharide-induced THP-1-derived macrophages, SFTSV infection of THP-1 cells, and SARS-CoV-2 infection of THP-1 cells. In this study, we found that levels of both IL-10 and IL-6 were significantly elevated, the level of transforming growth factor-ß (TGF-ß) was significantly decreased and IL-10 was elevated earlier than IL-6 in severe and critical COVID-19 and fatal SFTS patients, and inhibition of IL-10 signaling decreased the production of IL-6 and elevated that of TGF-ß. Therefore, the hyperproduction of IL-10 and IL-6 and the low production of TGF-ß have been linked to cytokine storm-induced mortality in fatal SFTS and severe and critically ill COVID-19 patients and that IL-10 can play an important role in the host immune response to severe and critical SARS-CoV-2 and fatal SFTSV infection.


Asunto(s)
COVID-19 , Síndrome de Trombocitopenia Febril Grave , Humanos , Síndrome de Liberación de Citoquinas , Citocinas , Interleucina-10 , Interleucina-6 , SARS-CoV-2 , Factor de Crecimiento Transformador beta
4.
Exp Mol Med ; 55(5): 952-964, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121971

RESUMEN

Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.


Asunto(s)
Histonas , Neoplasias Pulmonares , Humanos , Histonas/metabolismo , Histona Metiltransferasas/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proliferación Celular , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proteína smad3/genética , Proteína smad3/metabolismo
5.
Exp Mol Med ; 54(11): 1901-1912, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352257

RESUMEN

Although many cohort studies have reported that long-term exposure to particulate matter (PM) can cause lung cancer, the molecular mechanisms underlying the PM-induced increase in cancer metastasis remain unclear. To determine whether PM contributes to cancer metastasis, cancer cells were cultured with conditioned medium from PM-treated THP1 cells, and the migration ability of the treated cancer cells was assessed. The key molecules involved were identified using RNA-seq analysis. In addition, metastatic ability was analyzed in vivo by injection of cancer cells into the tail vein and intratracheal injection of PM into the lungs of C57BL/6 mice. We found that PM enhances the expression of heparin-binding EGF-like growth factor (HBEGF) in macrophages, which induces epithelial-to-mesenchymal transition (EMT) in cancer cells, thereby increasing metastasis. Macrophage stimulation by PM results in activation and subsequent nuclear translocation of the aryl hydrocarbon receptor and upregulation of HBEGF. Secreted HBEGF activates EGFR on the cancer cell surface to induce EMT, resulting in increased migration and invasion in vitro and increased metastasis in vivo. Therefore, our study reveals a critical PM-macrophage-cancer cell signaling axis mediating EMT and metastasis and provides an effective therapeutic approach for PM-induced malignancy.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Similar a EGF de Unión a Heparina , Macrófagos , Metástasis de la Neoplasia , Material Particulado , Animales , Ratones , Línea Celular Tumoral , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Material Particulado/efectos adversos
6.
ISME J ; 16(5): 1205-1221, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34972816

RESUMEN

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Propionatos , Regulación hacia Arriba
7.
Mol Med Rep ; 25(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029293

RESUMEN

Particulate matter (PM) can be categorized by particle size (PM10, PM2.5 and PM1.0), which is an important factor affecting the biological response. Exposure to PM in the air (dust, smoke, dirt and biological contaminants) is clearly associated with lung disease (lung cancer, pneumonia and asthma). Although PM primarily affects lung epithelial cells, the specific response of related cell types to PM remains to be elucidated. The present study performed Gene Ontology (GO) analysis programs (Clustering GO and Database for Annotation, Visualization and Integrated Discovery) on differentially expressed genes in lung epithelial cells (WI­38 VA­13) and fibroblasts (WI­38) following treatment with PM10 and evaluated the cell­specific biological responses related to cell proliferation, apoptosis, adhesion and extracellular matrix production. The results suggested that short­ or long­term exposure to PM may affect cell condition and may consequently be related to several human diseases, including lung cancer and cardiopulmonary disease.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Material Particulado/efectos adversos , Transcriptoma , Contaminantes Atmosféricos , Contaminación del Aire , Adhesión Celular , Línea Celular , Matriz Extracelular/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pulmón , RNA-Seq
8.
J Microbiol Biotechnol ; 31(12): 1624-1631, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34675142

RESUMEN

Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.


Asunto(s)
Gammaproteobacteria/metabolismo , Prodigiosina/metabolismo , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Reactores Biológicos , Carbono/metabolismo , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/química , Fermentación , Humanos , Prodigiosina/aislamiento & purificación , Células THP-1
9.
Mol Oncol ; 15(11): 2989-3002, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214254

RESUMEN

Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non-neoplastic lung tissues. Through gene ontology analysis of RNA-seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E-cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.


Asunto(s)
Neoplasias Pulmonares , Apoptosis/genética , Ciclo Celular , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
10.
J Microbiol Biotechnol ; 31(3): 475-482, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397835

RESUMEN

Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Gammaproteobacteria/química , Queratinocitos/efectos de los fármacos , Prodigiosina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Colágeno/metabolismo , Citocinas/metabolismo , Células HaCaT , Humanos , Inflamación , Queratinocitos/efectos de la radiación , Metaloproteinasa 9 de la Matriz/metabolismo , Envejecimiento de la Piel , Rayos Ultravioleta
11.
Cell Death Differ ; 28(3): 968-984, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989241

RESUMEN

Gallbladder carcinoma (GBC) exhibits poor prognosis due to local recurrence, metastasis, and resistance to targeted therapies. Using clinicopathological analyses of GBC patients along with molecular in vitro and tumor in vivo analysis of GBC cells, we showed that reduction of Dsg2 expression was highly associated with higher T stage, more perineural, and lymphatic invasion. Dsg2-depleted GBC cells exhibited significantly enhanced proliferation, migration, and invasiveness in vitro and tumor growth and metastasis in vivo through Src-mediated signaling activation. Interestingly, Dsg2 binding inhibited Src activation, whereas its loss activated cSrc-mediated EGFR plasma membrane clearance and cytoplasmic localization, which was associated with acquired EGFR-targeted therapy resistance and decreased overall survival. Inhibition of Src activity by dasatinib enhanced therapeutic response to anti-EGFR therapy. Dsg2 status can help stratify predicted patient response to anti-EGFR therapy and Src inhibition could be a promising strategy to improve the clinical efficacy of EGFR-targeted therapy.


Asunto(s)
Carcinoma/tratamiento farmacológico , Desmogleína 2/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/metabolismo , Animales , Carcinoma/enzimología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Desmogleína 2/genética , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de la Vesícula Biliar/enzimología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/genética
12.
Cell Microbiol ; 22(11): e13249, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32772454

RESUMEN

Shiga toxins (Stxs) produced by Stx-producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx-mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte-derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage-like differentiated THP-1 cells treated with Stxs secreted Stx-associated exosomes (Stx-Exo) of 90-130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3 )-dependent manner. Stx2-Exo engulfed by Gb3 -positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK-2. Stx2-Exo contained pro-inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2-Exo-mediated human renal cell death. Stx2-Exo isolated from human primary monocyte-derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx-containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin-sensitive cells. Therapeutic interventions targeting Stx-containing exosomes may prevent or ameliorate Stx-mediated acute vascular dysfunction.


Asunto(s)
Exosomas/metabolismo , Macrófagos/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidad , Trihexosilceramidas/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Exosomas/inmunología , Exosomas/ultraestructura , Humanos , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Toxina Shiga II/farmacología , Células THP-1
13.
Cell Death Dis ; 11(4): 231, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286254

RESUMEN

Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector protein HopQ into the plant cytosol via a type III secretion machinery and suppresses the host immunity. Intriguingly, host plant proteins regulated by HopQ are conserved even in humans and conferred in tumor metastasis. Nevertheless, the potential for HopQ to regulate human cancer metastasis was unknown. In this study, we addressed the suitability of HopQ as a possible drug against melanoma metastasis. In melanoma cells, overexpressed HopQ is phosphorylated and bound to 14-3-3 through its N-terminal domain, resulting in stronger interaction between HopQ and vimentin. The binding of HopQ to vimentin allowed for degradation of vimentin via p62-dependent selective autophagy. Attenuation of vimentin expression by HopQ inhibited melanoma motility and in vivo metastasis. These findings demonstrated that HopQ directly degraded vimentin in melanoma cells and could be applied to an inhibitor of melanoma metastasis.


Asunto(s)
Melanoma/tratamiento farmacológico , Vimentina/uso terapéutico , Animales , Autofagia , Movimiento Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Fosforilación , Transfección , Vimentina/farmacología
14.
Cells ; 9(1)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936366

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) modification regulates the activity of hundreds of nucleocytoplasmic proteins involved in a wide variety of cellular processes, such as gene expression, signaling, and cell growth; however, the mechanism underlying the regulation of B cell development and function by O-GlcNAcylation remains largely unknown. Here, we demonstrate that changes in cellular O-GlcNAc levels significantly affected the growth of pre-B cells, which rapidly proliferate to allow expansion of functional clones that express successfully rearranged heavy chains at the pro-B stage during early B cell development. In our study, the overall O-GlcNAc levels in these proliferative pre-B cells, which are linked to the glucose uptake rate, were highly induced when compared with those in pro-B cells. Thus, pharmacologically, genetically, or nutritionally, inhibition of O-GlcNAcylation in pre-B cells markedly downregulated c-Myc expression, resulting in cell cycle arrest via blockade of cyclin expression. Importantly, the population of B cells after the pro-B cell stage in mouse bone marrow was severely impaired by the administration of an O-GlcNAc inhibitor. These results strongly suggest that O-GlcNAcylation-dependent expression of c-Myc represents a new regulatory component of pre-B cell proliferation, as well as a potential therapeutic target for the treatment of pre-B cell-derived leukemia.


Asunto(s)
Acetilglucosamina/química , Proliferación Celular , Células Precursoras de Linfocitos B/citología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Ciclo Celular , Femenino , Glicosilación , Ratones , Ratones Endogámicos BALB C , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal
15.
Front Immunol ; 10: 2636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781121

RESUMEN

In host defense, it is crucial to maintain the acidity of the macrophage phagosome for effective bacterial clearance. However, the mechanisms governing phagosomal acidification upon exposure to gram-negative bacteria have not been fully elucidated. In this study, we demonstrate that in macrophages exposed to Escherichia coli, the thioredoxin-interacting protein (TXNIP)-associated inflammasome plays a role in pH modulation through the activated caspase-1-mediated inhibition of NADPH oxidase. While there was no difference in early-phase bacterial engulfment between Txnip knockout (KO) macrophages and wild-type (WT) macrophages, Txnip KO macrophages were less efficient at destroying intracellular bacteria in the late phase, and their phagosomes failed to undergo appropriate acidification. These phenomena were associated with reactive oxygen species production and were reversed by treatment with an NADPH oxidase inhibitor or a caspase inhibitor. In line with these results, Txnip KO mice were more susceptible to both intraperitoneally administered E. coli and sepsis induced by cecum ligation and puncture than WT mice. Taken together, this study suggests that the TXNIP-associated inflammasome-caspase-1 axis regulates NADPH oxidase to modulate the pH of the phagosome, controlling bacterial clearance by macrophages.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Infecciones por Escherichia coli/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Fagosomas/química , Tiorredoxinas/inmunología , Animales , Activación Enzimática/inmunología , Escherichia coli/inmunología , Concentración de Iones de Hidrógeno , Macrófagos/química , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/inmunología , Fagosomas/inmunología
16.
J Innate Immun ; 11(4): 316-329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30844806

RESUMEN

Influenza A virus (IAV) poses a constant worldwide threat to human health. Although conventional vaccines are available, their protective efficacy is type or strain specific, and their production is time-consuming. For the control of an influenza pandemic in particular, agents that are immediately effective against a wide range of virus variants should be developed. Although pretreatment of various Toll-like receptor (TLR) ligands have already been reported to be effective in the defense against subsequent IAV infection, the efficacy was limited to specific subtypes, and safety concerns were also raised. In this study, we investigated the protective effect of an attenuated bacterial outer membrane vesicle -harboring modified lipid A moiety of lipopolysaccharide (fmOMV) against IAV infection and the underlying mechanisms. Administration of fmOMV conferred significant protection against a lethal dose of pandemic H1N1, PR8, H5N2, and highly pathogenic H5N1 viruses; this broad antiviral activity was dependent on macrophages but independent of neutrophils. fmOMV induced recruitment and activation of macrophages and elicited type I IFNs. Intriguingly, fmOMV showed a more significant protective effect than other TLR ligands tested in previous reports, without exhibiting any adverse effect. These results show the potential of fmOMV as a prophylactic agent for the defense against influenza virus infection.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Lípido A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Vesículas Secretoras/inmunología , Animales , Escherichia coli/genética , Femenino , Humanos , Interferón Tipo I/metabolismo , Ligandos , Lípido A/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Receptores Toll-Like/agonistas
17.
Front Immunol ; 8: 1477, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163541

RESUMEN

Mycobacterium abscessus is a prominent cause of pulmonary infection in immunosuppressed patients and those with cystic fibrosis. Nucleotide-binding oligomerization domain (NOD) 2 is a cytosolic receptor which senses a bacterial peptidoglycan component, muramyl dipeptide (MDP). Although nucleotide-binding oligomerization domain 2 (NOD2) contributes to protect host against various microbial infections, it is still unclear whether NOD2 is essential to regulate host immune responses against M. abscessus infection. In this study, we sought to clarify the role of NOD2 and the underlying mechanism in host defense against M. abscessus infection. Mice were infected intranasally with M. abscessus and sacrificed at indicated time points. Bacterial survival, cytokines production, and pathology in the lungs were determined. Bone marrow-derived macrophages were used to clarify cellular mechanism of NOD2-mediated immune response. Bacterial clearance was impaired, and pathology was more severe in the lungs of NOD2-deficient mice compared with the wild-type mice. In macrophages, NOD2-mediated activation of p38 and JNK were required for production of proinflammatory cytokines and nitric oxide (NO) and expression of iNOS in response to M. abscessus. NO was critical for limiting intracellular growth of the pathogen. Intranasal administration of MDP reduced in vivo bacterial replication and thus improved lung pathology in M. abscessus-infected mice. This study offers important new insights into the potential roles of the NOD2 in initiating and potentiating innate immune response against M. abscessus pulmonary infection.

18.
J Endocrinol ; 235(3): 223-235, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29042402

RESUMEN

Healthy expansion of adipose tissue maintains metabolic homeostasis by storing excess chemical energy in increased fat mass. The STAT5-PPAR gamma pathway reportedly regulates adipocyte differentiation, lipid metabolism and adipogenesis. Ginsenoside Rg3 is one of the diverse groups of steroidal saponins, the major active components of ginseng, which have demonstrated pharmacological properties. In this study, we evaluated the therapeutic effects of ginsenoside Rg3 under pathological conditions in vitro and in vivo We examined the effects of ginsenoside Rg3 on glucose level, insulin sensitivity and lipogenesis in high-fat diet-fed C57BL/6 mice. Ginsenoside Rg3 was also applied to the pre-adipocyte cell line 3T3-L1 to assess the impact on lipogenesis. Ginsenoside Rg3 reduced epididymal white adipose tissue (eWAT) size and hepatic steatosis, and the amount of triglycerides (TGs) in both eWAT and liver. Similar to the murine model, Rg3-treated 3T3-L1 cells showed a reduction in lipid accumulation and amount of total TGs. Ginsenoside Rg3 regulates the expression of PPAR gamma though STAT5 in vitro and in vivo According to our results, lipid metabolism-related genes were downregulated in the high-fat mice and 3T3-L1 cell line. Rg3 shows potential for the amelioration of obesity-induced pathology, acting though STAT5-PPAR gamma to facilitate the healthy functioning of adipose tissue. This is the first report of evidence that obesity-induced insulin resistance and lipotoxicity can be treated with ginsenoside Rg3, which acts though the STAT5-PPAR gamma pathway in vivo and in vitro.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Hígado Graso/prevención & control , Ginsenósidos/farmacología , PPAR gamma/metabolismo , Factor de Transcripción STAT5/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Glucemia/metabolismo , Western Blotting , Dieta Alta en Grasa/efectos adversos , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Regulación de la Expresión Génica/efectos de los fármacos , Resistencia a la Insulina , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Obesidad/prevención & control , PPAR gamma/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/genética , Triglicéridos/metabolismo
19.
Toxins (Basel) ; 9(10)2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027919

RESUMEN

Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are the most potent known virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications such as acute renal failure, blindness and neurological abnormalities. Although numerous studies have defined apoptotic responses to Shiga toxin type 1 (Stx1) or Shiga toxin type 2 (Stx2) in a variety of cell types, the potential significance of Stx-induced apoptosis of photoreceptor and pigmented cells of the eye following intoxication is unknown. We explored the use of immortalized human retinal pigment epithelial (RPE) cells as an in vitro model of Stx-induced retinal damage. To the best of our knowledge, this study is the first report that intoxication of RPE cells with Stxs activates both apoptotic cell death signaling and the endoplasmic reticulum (ER) stress response. Using live-cell imaging analysis, fluorescently labeled Stx1 or Stx2 were internalized and routed to the RPE cell endoplasmic reticulum. RPE cells were significantly sensitive to wild type Stxs by 72 h, while the cells survived challenge with enzymatically deficient mutant toxins (Stx1A- or Stx2A-). Upon exposure to purified Stxs, RPE cells showed activation of a caspase-dependent apoptotic program involving a reduction of mitochondrial transmembrane potential (Δψm), increased activation of ER stress sensors IRE1, PERK and ATF6, and overexpression CHOP and DR5. Finally, we demonstrated that treatment of RPE cells with Stxs resulted in the activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), suggesting that the ribotoxic stress response may be triggered. Collectively, these data support the involvement of Stx-induced apoptosis in ocular complications of intoxication. The evaluation of apoptotic responses to Stxs by cells isolated from multiple organs may reveal unique functional patterns of the cytotoxic actions of these toxins in the systemic complications that follow ingestion of toxin-producing bacteria.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Epitelio Pigmentado de la Retina/citología
20.
Toxins (Basel) ; 8(3)2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26999205

RESUMEN

Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.


Asunto(s)
Toxinas Shiga , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Toxinas Shiga/química , Toxinas Shiga/farmacología , Toxinas Shiga/uso terapéutico , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA