Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomed Inform ; 156: 104680, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914411

RESUMEN

OBJECTIVE: Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. METHODS: In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. RESULTS: Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948-0.974) in internal validation and 0.922 (95% CI, 0.882-0.959) in external validation, respectively. CONCLUSION: The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.

2.
Sci Rep ; 13(1): 21881, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072984

RESUMEN

Postoperative desaturation is a common post-surgery pulmonary complication. The real-time prediction of postoperative desaturation can become a preventive measure, and real-time changes in spirometry data can provide valuable information on respiratory mechanics. However, there is a lack of related research, specifically on using spirometry signals as inputs to machine learning (ML) models. We developed an ML model and postoperative desaturation prediction index (DPI) by analyzing intraoperative spirometry signals in patients undergoing laparoscopic surgery. We analyzed spirometry data from patients who underwent laparoscopic, robot-assisted gynecologic, or urologic surgery, identifying postoperative desaturation as a peripheral arterial oxygen saturation level below 95%, despite facial oxygen mask usage. We fitted the ML model on two separate datasets collected during different periods. (Datasets A and B). Dataset A (Normal 133, Desaturation 74) was used for the entire experimental process, including ML model fitting, statistical analysis, and DPI determination. Dataset B (Normal 20, Desaturation 4) was only used for verify the ML model and DPI. Four feature categories-signal property, inter-/intra-position correlation, peak value/interval variability, and demographics-were incorporated into the ML models via filter and wrapper feature selection methods. In experiments, the ML model achieved an adequate predictive capacity for postoperative desaturation, and the performance of the DPI was unbiased.


Asunto(s)
Oximetría , Oxígeno , Humanos , Femenino , Oximetría/métodos , Complicaciones Posoperatorias , Mecánica Respiratoria , Espirometría
3.
Sci Rep ; 13(1): 18887, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919353

RESUMEN

Older adults are more likely to require emergency department (ED) visits than others, which might be attributed to their medication use. Being able to predict the likelihood of an ED visit using prescription information and readily available data would be useful for primary care. This study aimed to predict the likelihood of ED visits using extensive medication variables generated according to explicit clinical criteria for elderly people and high-risk medication categories by applying machine learning (ML) methods. Patients aged ≥ 65 years were included, and ED visits were predicted with 146 variables, including demographic and comprehensive medication-related factors, using nationwide claims data. Among the eight ML models, the final model was developed using LightGBM, which showed the best performance. The final model incorporated 93 predictors, including six sociodemographic, 28 comorbidity, and 59 medication-related variables. The final model had an area under the receiver operating characteristic curve of 0.689 in the validation cohort. Approximately half of the top 20 strong predictors were medication-related variables. Here, an ED visit risk prediction model for older people was developed and validated using administrative data that can be easily applied in clinical settings to screen patients who are likely to visit an ED.


Asunto(s)
Servicio de Urgencia en Hospital , Vida Independiente , Anciano , Humanos , Comorbilidad , Aprendizaje Automático , Curva ROC , Estudios Retrospectivos
4.
Biomed Res Int ; 2022: 3091660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37251497

RESUMEN

Impaired cerebral autoregulation (CA) can cause negative outcomes in neurological conditions. Real-time CA monitoring can predict and thereby help prevent postoperative complications for neurosurgery patients, especially those suffering from moyamoya disease (MMD). We applied the concept of moving average to the correlation between mean arterial blood pressure (MBP) and cerebral oxygen saturation (SCO2) to monitor CA in real time, revealing optimal window size for the moving average. The experiment was conducted with 68 surgical vital-sign records containing MBP and SCO2. To evaluate CA, the cerebral oximetry index (COx) and coherence obtained from transfer function analysis (TFA) were calculated and compared between patients with postoperative infarction and those who without. For real-time monitoring, the moving average was applied to COx and coherence to determine the differences between groups, and the optimal moving-average window size was identified. The average COx and coherence within the very-low-frequency (VLF) range (0.02-0.07 Hz) during the entire surgery were significantly different between the groups (COx: AUROC = 0.78, p = 0.003; coherence: AUROC = 0.69, p = 0.029). For the case of real-time monitoring, COx showed a reasonable performance (AUROC > 0.74) with moving-average window sizes larger than 30 minutes. Coherence showed an AUROC > 0.7 for time windows of up to 60 minutes; however, for windows larger than this threshold, the performance became unstable. With an appropriate window size, COx showed stable performance as a predictor of postoperative infarction in MMD patients.


Asunto(s)
Enfermedad de Moyamoya , Humanos , Enfermedad de Moyamoya/cirugía , Oximetría/métodos , Monitoreo Intraoperatorio/métodos , Espectroscopía Infrarroja Corta/métodos , Circulación Cerebrovascular/fisiología , Puente Cardiopulmonar , Homeostasis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA