Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Soc Rev ; 53(11): 5394-5427, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38597213

RESUMEN

Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Espectrometría Raman , Humanos , COVID-19/diagnóstico , COVID-19/virología , Nanopartículas del Metal/química , SARS-CoV-2/aislamiento & purificación , Sistemas de Atención de Punto , Oro/química
2.
J Exp Med ; 221(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442272

RESUMEN

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Factor C de Crecimiento Endotelial Vascular , Enfermedades Neuroinflamatorias , Drenaje
3.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014178

RESUMEN

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

4.
Nat Cardiovasc Res ; 2(5): 438-448, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-39196046

RESUMEN

Low-density lipoprotein (LDL) accumulation in the arterial wall contributes to atherosclerosis initiation and progression1. Activin A receptor-like type 1 (ACVRL1, called activin-like kinase receptor (ALK1)) is a recently identified receptor that mediates LDL entry and transcytosis in endothelial cells (ECs)2,3. However, the role of this pathway in vivo is not yet known. In the present study, we show that genetic deletion of ALK1 in arterial ECs of mice substantially limits LDL accumulation, macrophage infiltration and atherosclerosis without affecting cholesterol or triglyceride levels. Moreover, a selective monoclonal antibody binding ALK1 efficiently blocked LDL transcytosis, but not bone morphogenetic protein-9 (BMP9) signaling, dramatically reducing plaque formation in LDL receptor knockout mice fed a high-fat diet. Thus, our results demonstrate that blocking LDL transcytosis into the endothelium may be a promising therapeutic strategy that targets the initiating event of atherosclerotic cardiovascular disease.


Asunto(s)
Receptores de Activinas Tipo II , Aterosclerosis , Células Endoteliales , Lipoproteínas LDL , Receptores de LDL , Transcitosis , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Transcitosis/efectos de los fármacos , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/genética , Transducción de Señal , Masculino , Humanos , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Células Cultivadas
5.
Circulation ; 144(10): 805-822, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34182767

RESUMEN

BACKGROUND: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. METHODS: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. RESULTS: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. CONCLUSIONS: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.


Asunto(s)
Malformaciones Arteriovenosas , Células Endoteliales , Telangiectasia Hemorrágica Hereditaria , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Malformaciones Arteriovenosas/metabolismo , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Telangiectasia Hemorrágica Hereditaria/mortalidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Malformaciones Vasculares/metabolismo , Ratones
6.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128469

RESUMEN

Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.


Asunto(s)
Aorta/metabolismo , Quilomicrones/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Xantomatosis/metabolismo , Animales , Aorta/patología , Quilomicrones/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Gotas Lipídicas/patología , Lipoproteína Lipasa/deficiencia , Lipoproteína Lipasa/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Triglicéridos/genética , Xantomatosis/genética , Xantomatosis/patología
7.
J Neuroinflammation ; 17(1): 48, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019570

RESUMEN

BACKGROUND: Ischemic stroke is a main cause of mortality. Blood-brain barrier (BBB) breakdown appears to play a critical role in inflammation in patients with ischemic stroke and acceleration of brain injury. The BBB has a protective function and is composed of endothelial cells, pericytes, and astrocytes. In ischemic stroke treatments, regulation of vascular endothelial growth factor (VEGF)-A and vascular endothelial growth factor receptor (VEGFR)-2 is a crucial target despite adverse effects. Our previous study found that loss of C-type lectin family 14 member A (CLEC14A) activated VEGF-A/VEGFR-2 signaling in developmental and tumoral angiogenesis. Here, we evaluate the effects of BBB impairment caused by CLEC14A deficiency in ischemia-reperfusion injury. METHODS: In vitro fluorescein isothiocyanate (FITC)-dextran permeability, transendothelial electrical resistance (TEER) assay, and immunostaining were used to evaluate endothelial integrity. BBB permeability was assessed using Evans blue dye and FITC-dextran injection in Clec14a-/- (CLEC14A-KO) mice and wild-type mice. Middle cerebral artery occlusion surgery and behavioral assessments were performed to evaluate the neurologic damage. The change of tight junctional proteins, adhesion molecules, pro-inflammatory cytokines, and microglial were confirmed by immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction of brain samples. RESULTS: In endothelial cells, knockdown of CLEC14A increased FITC-dextran permeability and decreased transendothelial electrical resistance; the severity of this effect increased with VEGF treatment. Immunofluorescence staining revealed that tight junctional proteins were attenuated in the CLEC14A knockdown endothelial cells. Consistent with the in vitro results, CLEC14A-KO mice that were injected with Evans blue dye had cerebral vascular leakage at postnatal day 8; wild-type mice had no leakage. We used a middle cerebral artery occlusion model and found that CLEC14A-KO mice had severe infarcted brain and neurological deficits with upregulated VEGFR-2 expression. FITC-dextran leakage was present in CLEC14A-KO mice after ischemia-reperfusion, and the numbers of tight junctional molecules were significantly decreased. Loss of CLEC14A increased the pro-inflammatory response through adhesion molecule expression, and glial cells were activated. CONCLUSIONS: These results suggest that activation of VEGFR-2 in CLEC14A-KO mice aggravates ischemic stroke by exacerbating cerebral vascular leakage and increasing neuronal inflammation after ischemia-reperfusion injury.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Inflamación/patología , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/patología , Permeabilidad , Daño por Reperfusión/genética , Daño por Reperfusión/patología
8.
J Clin Invest ; 127(2): 457-471, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27991863

RESUMEN

Controlled angiogenesis and lymphangiogenesis are essential for tissue development, function, and repair. However, aberrant neovascularization is an essential pathogenic mechanism in many human diseases, including diseases involving tumor growth and survival. Here, we have demonstrated that mice deficient in C-type lectin family 14 member A (CLEC14A) display enhanced angiogenic sprouting and hemorrhage as well as enlarged jugular lymph sacs and lymphatic vessels. CLEC14A formed a complex with VEGFR-3 in endothelial cells (ECs), and CLEC14A KO resulted in a marked reduction in VEGFR-3 that was concomitant with increases in VEGFR-2 expression and downstream signaling. Implanted tumor growth was profoundly reduced in CLEC14A-KO mice compared with that seen in WT littermates, but tumor-bearing CLEC14A-KO mice died sooner. Tumors in CLEC14A-KO mice had increased numbers of nonfunctional blood vessels and severe hemorrhaging. Blockade of VEGFR-2 signaling suppressed these vascular abnormalities and enhanced the survival of tumor-bearing CLEC14A-KO mice. We conclude that CLEC14A acts in vascular homeostasis by fine-tuning VEGFR-2 and VEGFR-3 signaling in ECs, suggesting its relevance in the pathogenesis of angiogenesis-related human disorders.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Lectinas Tipo C/metabolismo , Linfangiogénesis , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/irrigación sanguínea , Neovascularización Patológica/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
9.
J Cell Biol ; 211(3): 619-37, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26553931

RESUMEN

The phosphoinositide 3-kinase-Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide-dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465-474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465-474 residues abrogated the AMIGO2-PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1-Akt pathway in ECs and suggest that interference of the PDK1-AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.


Asunto(s)
Membrana Celular/metabolismo , Supervivencia Celular/fisiología , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Aminoácidos/metabolismo , Animales , Apoptosis/fisiología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal/fisiología
10.
Exp Dermatol ; 24(7): 503-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808463

RESUMEN

Vascular endothelial growth factor receptor-2 (VEGFR-2) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signalling are important for tumor angiogenesis and metastasis. In this study, we identified (3-(2-(3-(morpholinomethyl)phenyl)thieno[3,2-b]pyridin-7-ylamino)phenol (LCB03-0110) as a potent angiogenesis inhibitor. LCB03-0110 inhibited VEGFR-2 and JAK/STAT3 signalling in primary cultured human endothelial cells and cancer cells. An in vitro kinase assay and molecular modelling revealed that LCB03-0110 inhibited VEGFR-2, c-SRC and TIE-2 kinase activity via preferential binding at the ATP-binding site of their kinases. LCB03-0110 successfully occupied the hydrophobic pocket of VEGFR-2, c-SRC and TIE-2. LCB03-0110 also inhibited hypoxia-induced HIF/STAT3 and EGF- or angiopoietin-induced signalling cascades. In addition, LCB03-0110 inhibited VEGF-induced proliferation, viability, migration and capillary-like tube formation. LCB03-0110 also suppressed the sprouting of endothelial cells in the rat aorta and the formation of new blood vessels in the mouse Matrigel plug assay, but also suppressed pulmonary metastasis and tumor xenograft in mice. Our results suggest that LCB03-0110 is a potential candidate small molecule for blocking angiogenesis mediated by aberrant activation of VEGFR-2 and JAK/STAT3 signalling.


Asunto(s)
Aminopiridinas/farmacología , Inhibidores de la Angiogénesis/farmacología , Quinasas Janus/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Tiofenos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Pelados , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Estructura Secundaria de Proteína , Ratas , Receptor TIE-2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/antagonistas & inhibidores
11.
Biochem Biophys Res Commun ; 450(4): 1320-6, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25003323

RESUMEN

Tumor blood vessels are often leaky because of poor covering by mural cells and loose cell-to-cell contacts. Leaky vessels result in hemorrhage and limited vascular perfusion, which lead to hypoxic tumor microenvironment. Antiangiogenic agents have been shown to normalize the tumor blood vessels, albeit temporarily. Continued administration has been found to be associated with increased tumor hypoxia, a major driving force behind chemoresistance and metastasis. Sac-1004 was recently demonstrated to prevent vascular leakage, normalize tumor vessels and prevent metastasis in sustained manner. Here, we sought that combining antiangiogenic agent, sunitinib with Sac-1004 could have better inhibitory effect upon tumor growth. We found that B16F10 tumor growth was significantly reduced and tumor-bearing mice survival was increased upon combining sunitinib therapy with Sac-1004. In concordance with this observation, tumor vascular perfusion was substantially improved in tumors receiving combination therapy. In addition, tumor vascular leakage was reduced to higher extent in combination treatment group as compared to either therapy alone, an effect attributed to improved vascular junction. Interestingly, hypoxia in tumor environment was significantly reduced, when sunitinib was combined with Sac-1004. Taken together, our data demonstrates that combining antiangiogenic therapy with vascular-leakage inhibiting agent might be a beneficial strategy to combat cancer.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Indoles/uso terapéutico , Melanoma Experimental/irrigación sanguínea , Neovascularización Patológica/tratamiento farmacológico , Pirroles/uso terapéutico , Saponinas/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Línea Celular Tumoral , Quimioterapia Combinada , Indoles/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Pirroles/administración & dosificación , Saponinas/administración & dosificación , Sunitinib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA