Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008476

RESUMEN

The use of carbon nanotubes has increased in the past few decades. Carbon nanotubes are implicated in the pathogenesis of pulmonary sarcoidosis, a chronic granulomatous inflammatory condition. We developed a murine model of chronic granulomatous inflammation using multiwall carbon nanotubes (MWCNT) to investigate mechanisms of granuloma formation. Using this model, we demonstrated that myeloid deficiency of ATP-binding cassette (ABC) cholesterol transporter (ABCG1) promotes granuloma formation and fibrosis with MWCNT instillation; however, the mechanism remains unclear. Our previous studies showed that MWCNT induced apoptosis in bronchoalveolar lavage (BAL) cells of wild-type (C57BL/6) mice. Given that continual apoptosis causes persistent severe lung inflammation, we hypothesized that ABCG1 deficiency would increase MWCNT-induced apoptosis thereby promoting granulomatous inflammation and fibrosis. To test our hypothesis, we utilized myeloid-specific ABCG1 knockout (ABCG1 KO) mice. Our results demonstrate that MWCNT instillation enhances pulmonary fibrosis in ABCG1 KO mice compared to wild-type controls. Enhanced fibrosis is indicated by increased trichrome staining and transforming growth factor-beta (TGF-ß) expression in lungs, together with an increased expression of TGF-ß related signaling molecules, interleukin-13 (IL-13) and Smad-3. MWCNT induced more apoptosis in BAL cells of ABCG1 KO mice. Initiation of apoptosis is most likely mediated by the extrinsic pathway since caspase 8 activity and Fas expression are significantly higher in MWCNT instilled ABCG1 KO mice compared to the wild type. In addition, TUNEL staining shows that ABCG1 KO mice instilled with MWCNT have a higher percentage of TUNEL positive BAL cells and more efferocytosis than the WT control. Furthermore, BAL cells of ABCG1 KO mice instilled with MWCNT exhibit an increase in efferocytosis markers, milk fat globule-EGF factor 8 (MFG-E8) and integrin ß3. Therefore, our observations suggest that ABCG1 deficiency promotes pulmonary fibrosis by MWCNT, and this effect may be due to an increase in apoptosis and efferocytosis in BAL cells.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar/citología , Granuloma/inducido químicamente , Granuloma/metabolismo , Nanotubos de Carbono/efectos adversos , Fagocitosis/fisiología , Animales , Lavado Broncoalveolar/métodos , Modelos Animales de Enfermedad , Enfermedad Granulomatosa Crónica/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/metabolismo , Fibrosis Pulmonar/metabolismo , Sarcoidosis Pulmonar/metabolismo
2.
Front Immunol ; 11: 553949, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072094

RESUMEN

Background: Sarcoidosis is a chronic inflammatory disease of unknown cause characterized by granuloma formation. Mechanisms for chronic persistence of granulomas are unknown. Matrix Metalloproteinase-12 (MMP12) degrades extracellular matrix elastin and enables infiltration of immune cells responsible for inflammation and granuloma formation. Previous studies report increased MMP12 in sarcoidosis patients and association between MMP12 expression and disease severity. We also observed elevated MMP12 in our multiwall carbon nanotube (MWCNT) murine model of granulomatous inflammation. Here we hypothesized that MMP12 is important to acute and late phases of granuloma pathogenesis. To test this hypothesis, we analyzed granulomatous and inflammatory responses of Mmp12 knock-out (KO) mice at 10 (acute) and 60 days (late) after MWCNT instillation. Methods: C57BL/6 (wildtype) and Mmp12 KO mice underwent oropharyngeal instillation of MWCNT. Lungs were harvested at 3, 10, 20, and 60 days post instillation for evaluation of MMP12 expression and granulomatous changes. Bronchoalveolar lavage (BAL) cells were analyzed 60 days after MWCNT instillation for expression of mediators thought to play a role in sarcoid granulomatosis: peroxisome proliferator-activated receptor-gamma (PPARγ), interferon-gamma (IFN-γ), and CCL2 (MCP-1). Results: Pulmonary granuloma appearance at 10 days after MWCNT instillation showed no differences between wildtype and Mmp12 KO mice. In contrast, by 60 days after MWCNT instillation, Mmp12 KO mice revealed markedly attenuated granuloma formation together with elevated PPARγ and reduced IFNγ expression in BAL cells compared to wildtype. Unexpectedly, Mmp12 KO mice further demonstrated increased alveolar macrophages with increased CCL2 at 60 days. Conclusions: The striking reduction of granuloma formation at day 60 in Mmp12 KO mice suggests that MMP12 is required to maintain chronic granuloma pathophysiology. The increased PPARγ and decreased IFNγ findings suggest that these mediators also may be involved since previous studies have shown that PPARγ suppresses IFNγ and PPARγ deficiency amplifies granuloma formation. Interestingly, a role of MMP12 in granuloma resolution is also suggested by increases in both macrophage influx and CCL2. Overall, our results strongly implicate MMP12 as a key factor in granuloma persistence and as a possible therapeutic target in chronic pulmonary sarcoidosis.


Asunto(s)
Granuloma/inmunología , Macrófagos Alveolares/inmunología , Metaloproteinasa 12 de la Matriz/inmunología , Nanotubos de Carbono/efectos adversos , Sarcoidosis Pulmonar/inmunología , Animales , Granuloma/inducido químicamente , Granuloma/genética , Granuloma/patología , Macrófagos Alveolares/patología , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones Noqueados , Sarcoidosis Pulmonar/inducido químicamente , Sarcoidosis Pulmonar/genética , Sarcoidosis Pulmonar/patología
3.
Toxicology ; 445: 152598, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976959

RESUMEN

Human exposure to carbon nanotubes (CNT) has been associated with the development of pulmonary sarcoid-like granulomatous disease. Our previous studies demonstrated that multi-walled carbon nanotubes (MWCNT) induced chronic pulmonary granulomatous inflammation in mice. Granuloma formation was accompanied by decreased peroxisome proliferator-activated receptor gamma (PPARγ) and disrupted intracellular lipid homeostasis in alveolar macrophages. Others have shown that PPARγ activation increases mitochondrial fatty acid oxidation (FAO) to reduce free fatty acid accumulation. Hence, we hypothesized that the disrupted lipid metabolism suppresses mitochondrial FAO. To test our hypothesis, C57BL/6 J mice were instilled by an oropharyngeal route with 100 µg MWCNT freshly suspended in 35 % Infasurf. Control sham mice received vehicle alone. Sixty days following instillation, mitochondrial FAO was measured in permeabilized bronchoalveolar lavage (BAL) cells. MWCNT instillation reduced the mitochondrial oxygen consumption rate of BAL cells in the presence of palmitoyl-carnitine as mitochondrial fuel. MWCNT also reduced mRNA expression of mitochondrial genes regulating FAO, carnitine palmitoyl transferase-1 (CPT1), carnitine palmitoyl transferase-2 (CPT2), hydroxyacyl-CoA dehydrogenase subunit beta (HADHB), and PPARγ coactivator 1 alpha (PPARGC1A). Importantly, both oxidative stress and apoptosis in alveolar macrophages and lung tissues of MWCNT-instilled mice were increased. Because macrophage PPARγ expression has been reported to be controlled by miR-27b which is known to induce oxidative stress and apoptosis, we measured the expression of miR-27b. Results indicated elevated levels in alveolar macrophages from MWCNT-instilled mice compared to controls. Given that inhibition of FAO and apoptosis are linked to M1 and M2 macrophage activation, respectively, the expression of both M1 and M2 key indicator genes were measured. Interestingly, results showed that both M1 and M2 phenotypes of alveolar macrophages were activated in MWCNT-instilled mice. In conclusion, alveolar macrophages of MWCNT-instilled mice had increased miR-27b expression, which may reduce the expression of PPARγ resulting in attenuation of FAO. This reduction in FAO may lead to activation of M1 macrophages. The upregulation of miR-27b may also induce apoptosis, which in turn can cause M2 activation of alveolar macrophages. These observations indicate a possible role of miR-27b in impaired mitochondrial function in the chronic activation of alveolar macrophages by MWCNT and the development of chronic pulmonary granulomatous inflammation.


Asunto(s)
Enfermedad Granulomatosa Crónica/inducido químicamente , Enfermedades Pulmonares/inducido químicamente , Macrófagos Alveolares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Animales , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/patología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-32405439

RESUMEN

BACKGROUND: The pathological consequences of interaction between environmental carbon pollutants and microbial antigens have not been fully explored. We developed a murine model of multi-wall carbon nanotube (MWCNT)-elicited granulomatous disease which bears a striking resemblance to sarcoidosis, a human granulomatous disease. Because of reports describing lymphocyte reactivity to mycobacterial antigens in sarcoidosis patients, we hypothesized that addition of mycobacterial antigen (ESAT-6) to MWCNT might elicit activation in T cells. METHODS: Macrophage-specific peroxisome-proliferator-activated receptor gamma (PPARγ) knock out (KO) mice were studied along with wild-type mice because our previous report indicated PPARγ deficiency in sarcoidosis alveolar macrophages. MWCNT+ESAT-6 were instilled into mice. Controls received vehicle (surfactant-PBS) or ESAT-6 and were evaluated 60 days post-instillation. As noted in our recent publication, lung tissues from PPARγ KO mice instilled with MWCNT+ESAT-6 yielded more intensive pathophysiology, with elevated fibrosis. RESULTS: Inspection of mediastinal lymph nodes (MLN) revealed no granulomas but deposition of MWCNT. MLN cell counts were higher in PPARγ KO than in wild-type instilled with MWCNT+ESAT-6. Moreover, the CD4:CD8 T cell ratio, a major clinical metric for human disease, was increased in PPARγ KO mice. Bronchoalveolar lavage (BAL) cells from PPARγ KO mice instilled with MWCNT+ESAT-6 displayed increased Th17 cell markers (RORγt, IL-17A, CCR6) which associate with elevated fibrosis. CONCLUSION: These findings suggest that PPARγ deficiency in macrophages may promote ESAT-6-associated T cell activation in the lung, and that the MWCNT+ESAT-6 model may offer new insights into pathways of lymphocyte-mediated sarcoidosis histopathology.

5.
Am J Respir Cell Mol Biol ; 61(2): 198-208, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30741559

RESUMEN

We established a murine model of multiwall carbon nanotube (MWCNT)-elicited chronic granulomatous disease that bears similarities to human sarcoidosis pathology, including alveolar macrophage deficiency of peroxisome proliferator-activated receptor γ (PPARγ). Because lymphocyte reactivity to mycobacterial antigens has been reported in sarcoidosis, we hypothesized that addition of mycobacterial ESAT-6 (early secreted antigenic target protein 6) to MWCNT might exacerbate pulmonary granulomatous pathology. MWCNTs with or without ESAT-6 peptide 14 were instilled by the oropharyngeal route into macrophage-specific PPARγ-knockout (KO) or wild-type mice. Control animals received PBS or ESAT-6. Lung tissues, BAL cells, and BAL fluid were evaluated 60 days after instillation. PPARγ-KO mice receiving MWCNT + ESAT-6 had increased granulomas and significantly elevated fibrosis (trichrome staining) compared with wild-type mice or PPARγ-KO mice that received only MWCNT. Immunostaining of lung tissues revealed elevated fibronectin and Siglec F expression on CD11c+ infiltrating alveolar macrophages in the presence of MWCNT + ESAT-6 compared with MWCNT alone. Analyses of BAL fluid proteins indicated increased levels of transforming growth factor (TGF)-ß and the TGF-ß pathway mediator IL-13 in PPARγ-KO mice that received MWCNT + ESAT-6 compared with wild-type or PPARγ-KO mice that received MWCNT. Similarly, mRNA levels of matrix metalloproteinase 9, another requisite factor for TGF-ß production, was elevated in PPARγ-KO mice by MWCNT + ESAT-6. Analysis of ESAT-6 in lung tissues by mass spectrometry revealed ESAT-6 retention in lung tissues of PPARγ-KO but not wild-type mice. These data indicate that PPARγ deficiency promotes pulmonary ESAT-6 retention, exacerbates macrophage responses to MWCNT + ESAT-6, and intensifies pulmonary fibrosis. The present findings suggest that the model may facilitate understanding of the effects of environmental factors on sarcoidosis-associated pulmonary fibrosis.


Asunto(s)
Antígenos Bacterianos/farmacología , Proteínas Bacterianas/farmacología , Macrófagos Alveolares/metabolismo , PPAR gamma/deficiencia , Fibrosis Pulmonar/microbiología , Sarcoidosis Pulmonar/microbiología , Animales , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , Antígenos CD11/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Fibrosis/metabolismo , Inflamación , Pulmón/patología , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotubos de Carbono/química , PPAR gamma/genética , Fibrosis Pulmonar/genética , Sarcoidosis Pulmonar/patología
6.
J Vis Exp ; (88)2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24962652

RESUMEN

Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup.


Asunto(s)
Movimiento Celular/fisiología , Técnicas Citológicas/métodos , Animales , Quimiotaxis/fisiología , Técnicas Citológicas/instrumentación , Melanoma Experimental/patología , Ratones , Células 3T3 NIH , Invasividad Neoplásica
7.
PLoS One ; 8(4): e61991, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613998

RESUMEN

Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value.


Asunto(s)
Acidosis/fisiopatología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Humanos , Receptores Acoplados a Proteínas G/genética
8.
PLoS One ; 6(11): e27586, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110680

RESUMEN

Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2',5'-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a G(i) signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the G(s)/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the G(s)/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells.


Asunto(s)
Acidosis/metabolismo , Acidosis/patología , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Acidosis/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiología , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Receptores Acoplados a Proteínas G/genética , Regulación hacia Arriba
9.
Cancer Lett ; 312(2): 197-208, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21917373

RESUMEN

GPR4 is a member of the proton-sensing G protein-coupled receptor family. Within tumor microenvironments, the interstitial acidic pH may activate GPR4 to regulate the behavior of tumor cells. Mouse B16F10 melanoma cells and TRAMP-C1 prostate cancer cells, genetically engineered to overexpress GPR4 or the control vector, were subject to a series of cell migration, invasion and metastasis assays. Upon GPR4 overexpression and activation in an acidic pH, the migration of B16F10 and TRAMP-C1 cells was substantially inhibited in comparison to the vector control. Similar results were observed in the Matrigel invasion and transendothelial invasion assays. At the molecular level, stimulation of GPR4 by acidosis induced the activation of RhoA and the formation of actin stress fibers. In addition, treating B16F10 cells with the known Rho activator CN01 (calpeptin) strongly inhibited cell migration, recapitulating the acidosis/GPR4-induced motility inhibition phenotype. To examine the biological effects in vivo, B16F10 melanoma cells were intravenously injected into syngeneic C57BL/6 mice and pulmonary metastasis was inhibited by approximately 80% in GPR4-overexpressing B16F10 cells in comparison to the vector control. Upon treatment with the Rho activator CN01, the phenotype of the B16F10 vector cells paralleled that of the GPR4-overexpressing cells in cell migration and metastasis assays. These findings suggest that GPR4 activation by an acidic pH inhibits tumor cell migration and invasion, and the Rho GTPase is at least partly responsible for this phenotype.


Asunto(s)
Metástasis de la Neoplasia/fisiopatología , Animales , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Ratones , Células 3T3 NIH , Reacción en Cadena de la Polimerasa , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA