Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Death Dis ; 15(9): 662, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256356

RESUMEN

Ovarian cancer, the second most leading cause of gynecologic cancer mortality worldwide, is challenged by chemotherapy resistance, presenting a significant hurdle. Pyroptosis, an inflammation-linked programmed cell death mediated by gasdermins, has been shown to impact chemoresistance when dysregulated. However, the mechanisms connecting pyroptosis to chemotherapy resistance in ovarian cancer are unclear. We found that cytokine receptor-like factor 1 (CRLF1) is a novel component of mTORC2, enhancing AKT Ser473 phosphorylation through strengthening the interaction between AKT and stress-activated protein kinase interacting protein 1 (SIN1), which in turn inhibits the mitogen-activated protein kinase kinase kinase 5 (ASK1)-JNK-caspase-3-gasdermin E pyroptotic pathway and ultimately confers chemoresistance. High CRLF1-expressing tumors showed sensitivity to AKT inhibition but tolerance to cisplatin. Remarkably, overexpression of binding-defective CRLF1 variants impaired AKT-SIN1 interaction, promoting pyroptosis and chemosensitization. Thus, CRLF1 critically regulates chemoresistance in ovarian cancer by modulating AKT/SIN1-dependent pyroptosis. Binding-defective CRLF1 variants could be developed as tumor-specific polypeptide drugs to enhance chemotherapy for ovarian cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 2 de la Rapamicina , Neoplasias Ováricas , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Piroptosis/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Línea Celular Tumoral , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ratones Desnudos , Transducción de Señal/efectos de los fármacos
2.
Cancer Lett ; 601: 217183, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153728

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Caspasa 8 , ADN Mitocondrial , Neoplasias Hepáticas , Proteínas de la Membrana , Piroptosis , Humanos , Piroptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Caspasa 8/metabolismo , Caspasa 8/genética , ADN Mitocondrial/genética , Línea Celular Tumoral , Animales , Ratones , Sorafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Front Biosci (Landmark Ed) ; 28(5): 102, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37258478

RESUMEN

BACKGROUND: rRNA-derived small RNAs (rsRNAs) represent a novel class of small non-coding RNAs (sncRNAs), produced by the specific cleavage of rRNAs; however, their roles in tumor development are unclear. In the present study, we explored the effect of a kind of rsRNA-28S, which originates from 28S rRNA, on the chemoresistance of prostate cancer cells and the mechanisms underlying its effect. METHODS: Quantitative reverse transcription PCR (RT-PCR) was performed to quantify rsRNA-28S levels in serum samples taken from prostate cancer patients. DU-145R cells, which are resistant to both paclitaxel and docetaxel, were generated from parental DU-145 cells. Northern blot was conducted to detect cellular rsRNA-28S levels following drug treatments. To verify the effect of rsRNAs-28S on chemoresistance, antisense oligonucleotides were utilized to block rsRNA-28S functions, and a series of assays were further performed, such as cell viability, cell proliferation, colony formation and tumor sphere formation. The target gene of rsRNA-28S was explored using dual-luciferase reporter gene assay. RESULTS: The rsRNA-28S level was reduced in the serum samples of patients who received chemotherapy compared to that of patients who did not. Furthermore, the rsRNA-28S level was remarkably declined in DU-145R cells, and drug treatments decreased the levels of rsRNA-28S in DU-145 and DU-145R cells. Moreover, rsRNA-28S inhibition enhanced the chemoresistance of prostate cancer cells as well as their cancer stem cell characteristics. Mechanistically, the prostaglandin I2 synthase (PTGIS) gene transcript was verified as a target of rsRNA-28S, as rsRNA-28S inhibited the translation of PTGIS mRNA by directly binding the 3' untranslated region of PTGIS mRNA. rsRNA-28S inhibition was also found to increase PTGIS abundance, and PTGIS overexpression significantly enhanced prostate cancer cell chemoresistance. CONCLUSIONS: Our findings indicate that rsRNA-28S attenuates prostate cancer cell chemoresistance by downregulating its target gene PTGIS. This study not only greatly contributes to systematic identification and functional elucidation of chemoresistance relevant rsRNAs, but also promotes rsRNA-included combinatorial therapeutic regimens for cancer.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Docetaxel/farmacología , Docetaxel/uso terapéutico , Proliferación Celular/genética , ARN Mensajero , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/farmacología
4.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678610

RESUMEN

Hepatocellular carcinoma is one of the most common fatal malignancies worldwide. Thus far, the hepatocellular carcinoma prognosis has been bleak due to deficiencies in the identification and diagnosis of early hepatocellular carcinoma. Ciclopirox olamine (CPX) is a synthetic antifungal agent and has been considered as an anti-cancer candidate drug recently, though the detailed mechanisms related to its anti-cancer effect in hepatocellular carcinoma have not yet been revealed. Here, we found that CPX could inhibit proliferation in HCC cells but not in intrahepatic cholangiocarcinoma cells by arresting the cell cycle. Moreover, the anti-cancer effects of CPX in HCC cells were also attributed to CPX-triggered ROS accumulation and DJ-1 downregulation. Additionally, CPX could promote complete autophagic flux, which alleviated the anti-cancer effect of CPX in HCC cells, whereas the ROS scavenger (NAC) would attenuate CPX-induced protective autophagy. Interestingly, CPX could also induce glycogen clustering in HCC cells. Altogether, this study provides a new insight into the detailed molecular mechanisms of CPX as an anti-cancer therapy and a strategy for treating hepatocellular carcinoma.

6.
Cancer Lett ; 546: 215842, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35964819

RESUMEN

tRNA-derived small RNAs (tsRNAs) represent a novel class of regulatory small non-coding RNAs (sncRNAs), produced by the specific cleavage of transfer RNAs (tRNAs). In recent years, pilot studies one after the other have uncovered the critical roles of tsRNAs in various fundamental biological processes as well as in the development of human diseases including cancer. Based on the newly updated hallmarks of cancer, we provide a comprehensive review regarding the dysregulation, functional implications and complicated molecular mechanisms of tsRNAs in cancer. In addition, the potential technical challenges and future prospects in the fields of tsRNA research are discussed in this review.


Asunto(s)
Neoplasias , ARN Pequeño no Traducido , Humanos , ARN de Transferencia
7.
Cell Commun Signal ; 20(1): 65, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551614

RESUMEN

BACKGROUND: Ezrin/radixin/moesin (ERM) proteins are members of the protein 4.1 superfamily and function as linkers that connect the actin cytoskeleton to the plasma membrane of cells. ERM also play critical role in the Lipopolysaccharide (LPS)-induced inflammatory response. However, the signaling mechanisms involved in this process remain unclear. In this study, we aimed to investigate the potential role of the rho-associated coiled-coil containing protein kinase (ROCK) pathway in LPS-induced ezrin phosphorylation and cytokine production in pulmonary alveolar epithelial cells. METHODS: Cultured A549 and HPAEpiC cells were treated with LPS. The expression and localization of ezrin in A549 and HPAEpiC cells were then analyzed by western blotting and immunoflurescence. Activation of RhoA/ROCK was assessed by western blotting and RhoA activity assays. The interaction of ezrin with Syk and myeloid differentiation factor 88 (MyD88)/IL-1R-associated kinase 1 (IRAK-1) was investigated by co-immunoprecipitation. The activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) was measured with electrophoretic mobility shift assays and by western blotting. ELISA and western blotting were performed to detect the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and high mobility group box 1 protein (HMGB1) release into the culture supernatant, and cellular HMGB1 levels. RESULTS: LPS induced ezrin phosphorylation in a concentration- and time-dependent manner. The blockade of RhoA/ROCK inhibited LPS-induced ezrin phosphorylation and its translocation from the cytoplasm to the cell membrane. Co-immunoprecipitation assays further revealed that ezrin associated with Syk constitutively, but only associated with MyD88/IRAK-1 upon LPS challenge. Moreover, LPS-induced p38 and nuclear NF-κB activation was found to be ezrin dependent. The suppression of ezrin by siRNA or the blockade of ROCK activation with Y-27632 reduced the production of TNF-α, IL-1ß, and HMGB1 in response to LPS. CONCLUSIONS: Our findings reveal a novel regulatory mechanism involving ezrin in the LPS-induced production of pro-inflammatory cytokines, and highlight the importance of the RhoA/ROCK-ezrin/Syk-MyD88/IRAK1 axis. Data presented in this manuscript provide novel insights into the signaling pathways activated in pulmonary alveolar epithelial cells by LPS. Video Abstract.


Asunto(s)
Proteína HMGB1 , Lipopolisacáridos , Células Epiteliales Alveolares/metabolismo , Citocinas/metabolismo , Proteínas del Citoesqueleto , Proteína HMGB1/metabolismo , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
8.
Redox Biol ; 53: 102339, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636017

RESUMEN

Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics.


Asunto(s)
Neoplasias del Cuello Uterino , Apoptosis , Autofagia , Ciclopirox/farmacología , Femenino , Glucógeno/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
9.
Genes Dis ; 9(1): 230-244, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35005120

RESUMEN

Filopodia, a finger-like structure and actin-rich plasma-membrane protrusion at the leading edge of the cell, has important roles in cell motility. However, the mechanisms of filopodia generation are not well-understood via the actin-related protein 2/3 (ARP2/3) complex in Non-Small Cell Lung Cancer (NSCLC) cells. We previously have demonstrated that PRR11 associates with the ARP2/3 complex to regulate cytoskeleton-nucleoskeleton assembly and chromatin remodeling. In this study, we further demonstrate that PRR11 involves in filopodia formation, focal adhesion turnover and cell motility through ARP2/3 complex. Cell phenotype assays revealed that the silencing of PRR11 increased cellular size and inhibited cell motility in NSCLC cells. Mechanistically, PRR11 recruited and co-localized with Arp2 at the membrane protrusion to promote filopodia formation but not lamellipodia formation. Notably, PRR11 mutant deletion of the proline-rich region 2 (amino acid residues 185-200) abrogated the effect of filopodia formation. In addition, PRR11-depletion inhibited filopodial actin filaments assembly and increased the level of active integrin ß1 in the cell surface, whereas reduced the phosphorylation level of focal adhesion kinase (FAKY397) to repress focal adhesion turnover and cell motility in NSCLC cells. Taken together, our findings indicate that PRR11 has critical roles in controlling filopodia formation, focal adhesion turnover and cell motility by recruiting ARP2/3 complex, thus dysregualted expression of PRR11 potentially facilitates tumor metastasis in NSCLC cells.

10.
BMC Anesthesiol ; 21(1): 210, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461834

RESUMEN

BACKGROUND: Opioid receptors are implicated in cell proliferation and cancer migration. However, the effects and underlying mechanisms of opioid receptor κ (OPRK1) in breast cancer remain unknown. METHODS: Small interfering RNA (siRNAs) was used to knockdown the expression of OPRK1. Western blot was used to determine the protein expression and reverse transcription-quantitative PCR (RT-qPCR) determined the genes transcription. Cell viability was detected by MTT assay and cell death rates were determined by Annexin V/PI and flow cytometry. Cell migration and invasion were detected by wound healing analysis and transwell assay, respectively. RESULTS: Our research demonstrated that OPRK1 was overexpressed in breast cancer cells compared with the normal human mammary epithelial cells. OPRK1 knockdown could inhibited cell viability and migration in cancer cells, accompanied with the decreased proteins and genes expression of N-cadherin, Snail, MMP2 and Vimentin, while the E-cadherin expression was increased. Additionally, OPRK1 knockdown also promoted PI3K/AKT signaling inactivation. Activation of AKT reversed the OPRK1 knockdown-induced cell viability inhibition and migration suppression, while inhibition of AKT reduced cell viability and promoted cell death. CONCLUSIONS: Our findings illustrated the role of OPRK1 played on promoting migration in vitro, and we also provided the therapeutic research of OPRK1 knockdown combined with AKT inhibition.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Receptores Opioides kappa/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Femenino , Silenciador del Gen , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Receptores Opioides kappa/genética , Transducción de Señal
11.
Oncogene ; 40(37): 5613-5625, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34316028

RESUMEN

B-Myb is an important transcription factor that plays a critical role in gene expression regulation and tumorigenesis. However, its functional implication in colorectal cancer remains elusive. In this study, we found that B-Myb was significantly upregulated at both mRNA and protein levels in colorectal cancer samples compared to non-tumor counterparts. B-Myb overexpression accelerated cell proliferation, cell cycle progression and cell motility in colorectal cancer cells, and promoted tumor growth in orthotopic nude mouse models in vivo. In contrast, B-Myb depletion inhibited these malignant phenotypes. Mechanistic investigations revealed that E2F2 was a novel transcriptional target of B-Myb and is essential to B-Myb-induced malignant phenotypes. Notably, B-Myb and E2F2 exhibited positive expression correlation, and interacted with each other in colorectal cancer cells. In addition to their autoregulatory mechanisms, B-Myb and E2F2 can also directly transactivate each other, thus constituting consolidated reciprocal feed-forward transactivation loops. Moreover, both B-Myb and E2F2 are required for the activation of ERK and AKT signaling pathways in colorectal cancer cells. Taken together, our data clarified a critical role for B-Myb in colorectal cancer and unraveled an exquisite mutual collaboration and reciprocal cross regulation between B-Myb and E2F2 that contribute to the malignant progression of human colorectal cancer.


Asunto(s)
Proteínas de Ciclo Celular , Transactivadores , Activación Transcripcional , División Celular , Regulación de la Expresión Génica , Humanos , ARN Mensajero , Factores de Transcripción
12.
Biol Open ; 9(5)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366371

RESUMEN

Tumor metastasis is the main contributor to high recurrence and mortality in colorectal cancer (CRC). In a previous study, we found that DJ-1 plays an important role in CRC metastasis, and is the main target in Ciclopirox olamine (CPX)-treated CRC. However, the mechanism underlying DJ-1-induced CRC metastasis remains elusive. In the present study, our results showed that DJ-1 could activate Wnt signaling resulting in enhanced invasive potential and epithelial-to-mesenchymal transition (EMT) in CRC cells. RNA-seq and bioinformatics analysis reveals that the DJ-1/Wnt signaling pathway may promote CRC cells' EMT by regulating fibroblast growth factor 9 (FGF9) expression. Molecular validation showed that expression of FGF9 was upregulated by the DJ-1/Wnt signaling pathway and decreasing FGF9-expression impeded DJ-1-induced CRC invasive ability and EMT, suggesting that FGF9 is involved in DJ-1-enhanced CRC metastasis. In addition, we show that FGF9 was overexpressed in CRC human specimens and was significantly associated with tumor differentiation. High FGF9 expression was correlated with worse overall survival, and a correlation exhibited between FGF9 and EMT markers (E-cadherin and Vimentin) in CRC samples. Together, our results determined that FGF9 was involved in DJ-1-induced invasion and EMT in CRC cells, and may represent a promising therapeutic candidate for CRC anti-metastatic strategies.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Pronóstico , Vía de Señalización Wnt
13.
J Biol Chem ; 295(16): 5335-5349, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32169900

RESUMEN

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100-184 or 100-200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.


Asunto(s)
Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Células A549 , Sitios de Unión , Humanos , Unión Proteica , Multimerización de Proteína , Proteínas/química , Proteínas/genética
14.
Exp Cell Res ; 387(2): 111786, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31870772

RESUMEN

Lysyl oxidase like 2, LOXL2, as a member of the lysyl oxidase (LOX) family, has been shown to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 is also engaged to transcription regulation, cell signaling transduction and cell adhesion regulation. It has been reported that LOXL2 is highly expressed in several types of tumors and promotes cell proliferation and migration in various cancer cells. However, the regulatory mechanism of LOXL2 expression remains largely unknown. To further investigate its transcriptional regulatory mechanism, LOXL2 promoter region has been cloned and identified in the present study. Chromatin state analysis revealed that LOXL2 gene locus contained an active promoter near its first exon. We then constructed five different LOXL2 gene promoter luciferase reporter constructs covering 1.7 kb upstream of LOXL2 gene transcription initiation site. Series luciferase reporter assay demonstrated that all the five constructs showed notable promoter activity, and LOXL2 core promoter was located in a region of 185 bp near the transcription initiation site. Transcriptional factor binding analysis indicated that, LOXL2 promoter lacked classical TATA box, but contained putative binding sites for classic transcriptional factors such as Sp1 and NF-κB. Ectopic overexpression of Sp1 significantly enhanced LOXL2 promoter activity as well as its endogenous expression in cells. In contrast, mithramycin A (a selective Sp1 inhibitor) treatment repressed LOXL2 promoter as well as its endogenous transcription. Site directed mutagenesis assay further confirmed that the Sp1 binding sites were essential for proximal prompter activity of LOXL2 gene. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 bound LOXL2 promoter in vivo. Of note, the expression of Sp1 and LOXL2 are positively correlated, and the higher expression of LOXL2 is associated with poor prognosis in colorectal cancer, strongly suggesting the implication of Sp1-mediated LOXL2 transactivation in the pathogenesis of colorectal cancer.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Neoplasias Colorrectales/genética , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , FN-kappa B/genética , Unión Proteica/genética , Alineación de Secuencia , Factor de Transcripción Sp1/genética , Sitio de Iniciación de la Transcripción/fisiología
15.
Autophagy ; 16(1): 106-122, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30909789

RESUMEN

GBM (glioblastoma multiforme) is the most common and aggressive brain tumor with no curative options available. Therefore, it is imperative to develop novel potent therapeutic drugs for GBM treatment. Here, we show that regorafenib, an oral multi-kinase inhibitor, exhibits superior therapeutic efficacy over temozolomide, the first-line chemotherapeutic agent for GBM treatment both in vitro and in vivo. Mechanistically, regorafenib directly stabilizes PSAT1 (phosphoserine aminotransferase 1), a critical enzyme for serine synthesis, to trigger PRKAA-dependent autophagy initiation and inhibit RAB11A-mediated autophagosome-lysosome fusion, resulting in lethal autophagy arrest in GBM cells. Maintenance of PSAT1 at a high level is essential for regorafenib-induced GBM suppression. Together, our data provide novel mechanistic insights of regorafenib-induced autophagy arrest and suggest a new paradigm for effective treatment of GBM.Abbreviations: 3-MA: 3-methyladenine; ACACA: acetyl coenzyme A carboxylase alpha; ACTB/ß-actin: actin, beta; AMPK: adenosine monophosphate-activated protein kinase; ATG5: autophagy related 5; CTSD: cathepsin D; DN-: dominant-negative; GBM: glioblastoma multiforme; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PSAT1: phosphoserine aminotransferase 1; SQSTM1/p62: sequestosome 1; TKIs: tyrosine kinase inhibitors.


Asunto(s)
Autofagia/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Transaminasas/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Proteína 5 Relacionada con la Autofagia/efectos de los fármacos , Glioblastoma/patología , Humanos , Proteínas Asociadas a Microtúbulos , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
16.
Theranostics ; 9(19): 5577-5594, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534504

RESUMEN

Rationale: Colorectal cancer (CRC) is one of the most common cancers worldwide. Ciclopirox olamine (CPX) has recently been identified to be a promising anticancer candidate; however, novel activities and detailed mechanisms remain to be uncovered. Methods: The cytotoxic potential of CPX towards CRC cells was examined in vitro and in vivo. The global gene expression pattern, ROS levels, mitochondrial function, autophagy, apoptosis, etc. were determined between control and CPX-treated CRC cells. Results: We found that CPX inhibited CRC growth by inhibiting proliferation and inducing apoptosis both in vitro and in vivo. The anti-cancer effects of CPX involved the downregulation of DJ-1, and overexpression of DJ-1 could reverse the cytotoxic effect of CPX on CRC cells. The loss of DJ-1 resulted in mitochondrial dysfunction and ROS accumulation, thus leading to CRC growth inhibition. The cytoprotective autophagy was provoked simultaneously, and blocking autophagy pharmacologically or genetically could further enhance the anti-cancer efficacy of CPX. Conclusion: Our study demonstrates that DJ-1 loss-induced ROS accumulation plays a pivotal role in CPX-mediated CRC inhibition, providing a further understanding for CRC treatment via modulating compensatory protective autophagy.


Asunto(s)
Antineoplásicos/administración & dosificación , Autofagia/efectos de los fármacos , Ciclopirox/administración & dosificación , Neoplasias Colorrectales/fisiopatología , Proteína Desglicasa DJ-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína Desglicasa DJ-1/genética
17.
J Exp Clin Cancer Res ; 38(1): 353, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412953

RESUMEN

BACKGROUND: Tubeimoside-I (TBM), a plant-derived bioactive compound, shows antitumor activity in different tumors and can enhance the efficacy of chemotherapeutic agents. However, the detail mechanism underlying remains to be elucidated. METHODS: The cytotoxic potential of TBM towards CRC cells was examined by CCK8 assay, colony formation, LDH release assay, flow cytometry method and Western blots. The ROS levels, autophagy, apoptosis, chemosensitivity to 5-FU or DOX, etc. were determined between control and TBM-treated CRC cells. RESULTS: In this study, we found that TBM could inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. Intriguingly, TBM treatment could either promote autophagy initiation by ROS-induced AMPK activation, or block autophagy flux through inhibiting lysosomal hydrolytic enzymes, which leaded to massive impaired autophagylysosomes accumulation. Administration of autophagy initiation inhibitor (3-MA or selective ablation of autophagy related proteins) relieves TBM-induced CRC suppression, while combination use of autophagy flux inhibitor chloroquine (CQ) slightly augments TBM-induced cell death, suggesting that impaired autophagylysosomes accumulation contributes to TBM-induced growth inhibition in CRC cells. Notably, as an autophagy flux inhibitor, TBM works synergistically with 5-fluorouracil (5-FU) or doxorubicin (DOX) in CRC suppression. CONCLUSION: Together, our study provides new insights regarding the anti-tumor activity of TBM against CRC, and established potential applications of TBM for CRC combination therapies in clinic.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fagosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Fluorouracilo/farmacología , Humanos , Lisosomas/metabolismo , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
Cell Death Dis ; 10(8): 615, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409796

RESUMEN

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Development of novel chemotherapeutics is still required to enable successful treatment and improve survival for CRC patients. Here, we found that osimertinib (OSI) exhibits potent anti-CRC effects by inducing apoptosis, independent of its selective inhibitory activity targeting the EGFR T790M mutation. Intriguingly, OSI treatment triggers autophagic flux in CRC cells. Inhibition of autophagy markedly augments OSI-induced apoptosis and growth inhibition in CRC cells, suggesting a protective role of autophagy in response to OSI treatment. Mechanistically, OSI upregulates the expression of monocarboxylate transporter 1 (MCT1) and subsequently activates LKB1/AMPK signaling, leading to autophagy induction in CRC cells. Notably, OSI significantly exaggerates the sensitivity of CRC cells to the first-line drugs 5-fluorouracil or oxaliplatin. Taken together, our study unravels a novel mechanism of OSI-mediated protective autophagy involving MCT1/LKB1/AMPK signaling, and suggests the use of OSI as a potential agent for clinical CRC treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Autofagia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Simportadores/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fluorouracilo/farmacología , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Oxaliplatino/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
Theranostics ; 9(17): 4878-4892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410188

RESUMEN

Rationale: The sustained and severe endoplasmic reticulum (ER) stress in cancer cells may contribute to apoptotic cell death, thus representing a potential target for cancer therapy. Brigatinib is an anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of ALK-positive non-small-cell lung cancer (NSCLC). However, it remains unclear if brigatinib has alternative model of action to exert antitumor effect in ALK-negative cancers. Methods: ALK-positive NSCLC cells and various human ALK-negative cancer cells, especially human colorectal cancer (CRC) cells were used to examine the tumor suppression effect of brigatinib alone or in combination with autophagy inhibitors in vitro and in vivo. A variety of biochemical assays were conducted to elucidate the underlying mechanisms of brigatinib in CRC cells. Results: Here, we show the significant anti-cancer effect of brigatinib in CRC through induction of apoptosis by sustained ER stress. Mechanistically, brigatinib induces ER stress via promoting the interaction between ubiquitin-specific peptidase 5 (USP5), a deubiquitinase, and oxysterol-binding protein-related protein 8 (ORP8), leading to ORP8 deubiquitination, accumulation and growth inhibition. Furthermore, we find that brigatinib-mediated ER stress simultaneously induces autophagic response via ER-phagy that acts as a protective mechanism to relieve excessive ER stress. As such, combination of brigatinib with autophagy inhibitors significantly enhances the anti-CRC effect of brigatinib both in vitro and in vivo, supporting the repurposing of brigatinib in CRC, independently of ALK. Conclusion: The unearthed new molecular action of brigatinib suggests that therapeutic modulation of ER stress and autophagy might represent a valid strategy to treat CRC and perhaps other ALK-negative cancers.


Asunto(s)
Antineoplásicos/farmacología , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Compuestos Organofosforados/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Células A549 , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias Colorrectales/metabolismo , Endopeptidasas/metabolismo , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Compuestos Organofosforados/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Receptores de Esteroides/metabolismo , Ubiquitinación
20.
Clin Sci (Lond) ; 133(7): 789-804, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30902828

RESUMEN

Bleomycin, a widely used anti-cancer drug, may give rise to pulmonary fibrosis, a serious side effect which is associated with significant morbidity and mortality. Despite the intensive efforts, the precise pathogenic mechanisms of pulmonary fibrosis still remain to be clarified. Our previous study showed that bleomycin bound directly to annexin A2 (ANXA2, or p36), leading to development of pulmonary fibrosis by impeding transcription factor EB (TFEB)-induced autophagic flux. Here, we demonstrated that ANXA2 also played a critical role in bleomycin-induced inflammation, which represents another major cause of bleomycin-induced pulmonary fibrosis. We found that bleomycin could induce the cell surface translocation of ANXA2 in lung epithelial cells through exosomal secretion, associated with enhanced interaction between ANXA2 and p11. Knockdown of ANXA2 or blocking membrane ANXA2 mitigated bleomycin-induced activation of nuclear factor (NF)-κB pathway and production of pro-inflammatory cytokine IL-6 in lung epithelial cells. ANXA2-deficient (ANXA2-/-) mice treated with bleomycin exhibit reduced pulmonary fibrosis along with decreased cytokine production compared with bleomycin-challenged wild-type mice. Further, the surface ANXA2 inhibitor TM601 could ameliorate fibrotic and inflammatory response in bleomycin-treated mice. Taken together, our results indicated that, in addition to disturbing autophagic flux, ANXA2 can contribute to bleomycin-induced pulmonary fibrosis by mediating inflammatory response.


Asunto(s)
Anexina A2/metabolismo , Bleomicina , Pulmón/metabolismo , Neumonía/metabolismo , Fibrosis Pulmonar/metabolismo , Células A549 , Animales , Anexina A2/antagonistas & inhibidores , Anexina A2/genética , Modelos Animales de Enfermedad , Exosomas/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Neumonía/inducido químicamente , Neumonía/patología , Neumonía/prevención & control , Transporte de Proteínas , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Venenos de Escorpión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA