Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Mol Histol ; 55(3): 303-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613589

RESUMEN

BACKGROUND: The prevalence of TNBC in India is higher compared to western countries. There is a multitude of biomarkers associated with different clinical outcomes of TNBC with contradictory reports. Identification of a set of specific biomarkers from the very many number of proteins reported in the literature to predict prognosis of TNBC is an urgent clinical need. METHODOLOGY: A systematic review of key molecular biomarkers in cohort studies that have been investigated for their role in breast cancer prognosis was conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was followed. A meta-analysis was used to evaluate their pooled hazard ratio (HR) and the corresponding 95% confidence interval (95% CI) statistically. Immunohistochemical characterization of the meta-analyzed markers were performed in a cohort of 200 retrospective TNBC and 100 non TNBC patient tissues. Kaplan-Meier plot were used to evaluate disease free survival (DFS), and overall survival (OS). Cox regression models were used to evaluate predictors of DFS and OS. RESULTS: Using a meta-analytical approach, we consolidated the biomarker signatures associated with survival outcomes in breast cancers. The promising markers that emerged for the prediction of DFS and OS included E-Cadherin, Survivin, p53, MTA1, HIF1A, CD133, Vimentin and CK5/6. Evaluation of these markers in tumor tissue revealed that subcellular localization of p53, MTA1 and HIF1A had a significant association in predicting TNBC prognosis. Kaplan Meier plot revealed that p53 (OS p = 0.007, DFS p = 0.004), HIF 1 A (OS p = 0.054, DFS p = 0.009) and MTA1 (OS p = 0.043, DFS = p = 0.001) expression in the primary tumor tissue were found to be significantly correlated with poor OS and DFS, whereas expression of Survivin (DFS p = 0.024) and E Cadherin (DFS p = 0.027) correlated with DFS alone in TNBC. Univariate analysis revealed that p53, HIF1A and MTA1 could be independent prognostic markers. CONCLUSION: Our study suggests cytoplasmic over expression of HIF1A, nuclear over expression of MTA1 and mutated p53 in the primary tumor tissue of TNBC have significance as markers predicting survival of TNBC patients.


Asunto(s)
Biomarcadores de Tumor , Histona Desacetilasas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas Represoras , Transactivadores , Neoplasias de la Mama Triple Negativas , Proteína p53 Supresora de Tumor , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Represoras/metabolismo , Biomarcadores de Tumor/metabolismo , Femenino , Transactivadores/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Pronóstico , Estimación de Kaplan-Meier
2.
Pathol Res Pract ; 253: 155033, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134837

RESUMEN

There is a plethora of information embedded in a tissue section that the conventional IHC understands only partially. Predictive biomarkers for precision immuno-oncology heavily dependent on the spatial arrangement of cells and the co-expression patterns in the tissue sections. Here we have explored the versatility of indirect multiplex immunofluorescence (mIF) and indirect multiplex immunohistochemistry (mIHC) for the labeling of breast cancer prognostic markers in routinely processed, formalin-fixed paraffin-embedded (FFPE) tissues at high resolution. The multiplex immunohistochemistry protocol utilized sequential staining for the chromogenic immunolabelling of Estrogen Receptor α (ERα) or Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Nucleoside diphosphate kinase 1 (NM23) by multicolor chromogens in different combinations. A feasible workflow for multiplex immunofluorescence was also effectively standardized for ERα, PR, and HER2 using combinations of commercially available Alexa Fluor and Quantum dots semiconductor nanocrystal conjugated secondary antibodies. Multiplex chromogenic immunolabeling revealed differential expression of the markers on the same slide. Kappa statistics revealed perfect agreement with uniplex immunohistochemistry. For multiplex fluorescence approach, surface receptor detection using Quantum dots and Alexa fluor dyes for cytoplasmic or nuclear markers performed well for profiling multiple co-localized biomarkers on a single paraffin tissue section. The technique developed reveals additional information such as co-expression, spatial relationships, and tumor heterogeneity, providing a deeper insight into developing combinatorial therapeutic strategies in clinical care. This high throughput workflow complements the outcomes of traditional IHC while saving tissue, time, labour, and reagents.


Asunto(s)
Neoplasias de la Mama , Puntos Cuánticos , Humanos , Femenino , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno , Colorantes , Antígenos
3.
Cytojournal ; 20: 16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37681073

RESUMEN

Lung cancer has always been a burden to the society since its non-effective early detection and poor survival status. Different imaging modalities such as computed tomography scan have been practiced for lung cancer detection. This review focuses on the importance of sputum cytology for early lung cancer detection and biomarkers effective in sputum samples. Published articles were discussed in light of the potential of sputum cytology for lung cancer early detection and risk assessment across high-risk groups. Recent developments in sample processing techniques have documented a clear potential to improve or refine diagnosis beyond that achieved with conventional sputum cytology examination. The diagnostic potential of sputum cytology may be exploited better through the standardization and automation of sputum preparation and analysis for application in routine laboratory practices and clinical trials. The challenging aspects in sputum cytology as well as sputum-based molecular markers are to ensure appropriate standardization and validation of the processing techniques.

4.
J Cell Mol Med ; 27(18): 2744-2755, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37614064

RESUMEN

27-hydroxycholesterol (27-HC) is a cholesterol metabolite and the first discovered endogenous selective estrogen receptor modulator (SERM) that has been shown to have proliferative and metastatic activity in breast cancer. However, whether 27-HC metabolite modulates the epigenetic signatures in breast cancer and its progression remains unclear. The current study, reports that 27-HC represses the expression of euchromatic histone lysine methyltransferase G9a, further reducing di-methylation at H3K9 in a subset of genes. We also observed reduced occupancy of ERα at the G9a promoter, indicating that 27-HC negatively regulates the ERα occupancy on the G9a promoter and functions as a transcriptional repressor. Further, ChIP-sequencing for the H3K9me2 mark has demonstrated that 27-HC treatment reduces the H3K9me2 mark on subset of genes linked to cancer progression, proliferation, and metastasis. We observed upregulation of these genes following 27-HC treatment which further confirms the loss of methylation at these genes. Immunohistochemical analysis with breast cancer patient tissues indicated a positive correlation between G9a expression and CYP7B1, a key enzyme of 27-HC catabolism. Overall, this study reports that 27-HC represses G9a expression via ERα and reduces the levels of H3K9me2 on a subset of genes, including the genes that aid in breast tumorigenesis and invasion further, increasing its expression in the breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Hidroxicolesteroles/farmacología , Receptores de Estrógenos
5.
Tumour Biol ; 45(1): 31-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574746

RESUMEN

BACKGROUND: Lack of druggable targets and complex expression heterogeneity of known targets is common among TNBC subtypes. An enhanced expression of galectin-3 in TNBCs has already been documented. We have observed a tumor progression-dependent galectin-3 expression in TNBCs compared to adjacent epithelium and non TNBCs. OBJECTIVE: To unravel the association of galectin- 3 in tumor progression, aggressiveness and drug resistance in TNBC patients. METHODS: Galectin-3 expression in 489 breast cancer tissues was correlated with clinicopathological features and the results were validated in cell lines and mouse model by silencing galectin-3 using shRNA and the proteins were profiled by western blot and qRT-PCR. Protein interaction was analyzed by GFP Trap and Mass spectrometry. RESULTS: Galectin-3 expression correlated with tumor stage in TNBC and a lower galectin-3 expression was associated with poor patient survival. The positive correlation between galectin-3, vimentin and CD44 expression, pinpoints galectin-3 contribution to epithelial to mesenchymal transition, drug resistance and stemness. Vimentin was found as an interacting partner of galectin-3. Duplexing of galecin-3 and vimentin in patient samples revealed the presence of tumor cells co-expressing both galectin-3 and vimentin. In vitro studies also showed its role in tumor cell survival and metastatic potential, elementary for tumor progression. In vivo studies further confirmed its metastatic potential. CONCLUSIONS: Tumor progression dependent expression pattern of galectin 3 was found to indicate prognosis. Co-expression of galectin-3 and vimentin in tumor cells promotes tumor dissemination, survival and its metastatic capability in TNBCs.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Vimentina/genética , Vimentina/metabolismo
6.
Biosens Bioelectron ; 227: 115177, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871528

RESUMEN

Simultaneous detection of multiple biomarkers is always an obstacle in immunohistochemical (IHC) analysis. Herein, a straightforward spectroscopy-driven histopathologic approach has emerged as a paradigm of Raman-label (RL) nanoparticle probes for multiplex recognition of pertinent biomarkers in heterogeneous breast cancer. The nanoprobes are constructed by sequential incorporation of signature RL and target specific antibodies on gold nanoparticles, which are coined as Raman-Label surface enhanced Raman scattering (RL-SERS)-nanotags to evaluate simultaneous recognition of clinically relevant breast cancer biomarkers i.e., estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor2 (HER2). As a foot-step assessment, breast cancer cell lines having varied expression levels of the triple biomarkers are investigated. Subsequently, the optimized detection strategy using RL-SERS-nanotags is subjected to clinically confirmed, retrospective formalin-fixed paraffin embedded (FFPE) breast cancer tissue samples to fish out the quick response of singleplex, duplex as well as triplex biomarkers in a single tissue specimen by adopting a ratiometric signature RL-SERS analysis which enabled to minimize the false negative and positive results. Significantly, sensitivity and specificity of 95% and 92% for singleplex, 88% and 85% for duplex, and 75% and 67% for triplex biomarker has been achieved by assessing specific Raman fingerprints of the respective SERS-tags. Furthermore, a semi-quantitative evaluation of HER2 grading between 4+/2+/1+ tissue samples was also achieved by the Raman intensity profiling of the SERS-tag, which is fully in agreement with the expensive fluorescent in situ hybridization analysis. Additionally, the practical diagnostic applicability of RL-SERS-tags has been achieved by large area SERS imaging of areas covering 0.5-5 mm2 within 45 min. These findings unveil an accurate, inexpensive and multiplex diagnostic modality envisaging large-scale multi-centric clinical validation.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Nanopartículas del Metal , Animales , Humanos , Femenino , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/patología , Oro , Hibridación Fluorescente in Situ , Estudios Retrospectivos , Técnicas Biosensibles/métodos
7.
ACS Omega ; 8(11): 10383-10396, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969395

RESUMEN

Clerodendrum infortunatum (C. infortunatum), the hill glory bower, is reputed as the prodigious treasure for Indian folk medicine. The study has focused on exploring the phytochemistry and antitumor potential of the C. infortunatum root extract in vitro and in vivo. The ethyl acetate root extract has demonstrated the highest cytotoxicity in a series of nine human tumor cell lines. Further fractionation of the same has yielded seven compounds. The structures of these compounds were confirmed with spectroscopic techniques. Considering the toxicity observed with the crude extract, cytotoxicity of these compounds was further assessed in two breast carcinoma cell lines (MCF-7[ER/PR-positive HER2-negative] and MDA-MB-231 [ER/PR/HER2-negative]) and in two cervical cancer [human papilloma virus (HPV)-negative C33A and HPV-positive SiHa] cell lines. Betulinic acid (BA) was found as the active principle contributing the cytotoxic activity, and cervical cancer cell lines documented the minimum IC50 value in 24 h. In order to validate the in vitro experimental data, we have established a xenograft model of HPV-positive cervical cancer in female NOD/SCID mice treated with BA using doxorubicin as the positive control. BA treatment gradually reduced the tumor size, maintaining healthy hematological and biochemical parameters, and improved the survival rate of tumor-bearing mice considerably. Thus, our findings suggest that the C. infortunatum root extract has a promising anticancer property against HPV-positive cervical cancer and supports its usage by traditional healers for treating cervical cancer.

8.
J Cell Biochem ; 123(4): 782-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106828

RESUMEN

Cancer cells grown as 3D-structures are better models for mimicking in vivo conditions than the 2D-culture systems employable in drug discovery applications. Cell cycle and cell death are important determinants for preclinical drug screening and tumor growth studies in laboratory conditions. Though several 3D-models and live-cell compatible approaches are available, a method for simultaneous real-time detection of cell cycle and cell death is required. Here we demonstrate a high-throughput adaptable method using genetically encoded fluorescent probes for the real-time quantitative detection of cell death and cell cycle. The cell-cycle indicator cdt1-Kusabira orange (KO) is stably integrated into cancer cells and further transfected with the Fluorescence Resonance Energy Transfer-based ECFP-DEVD-EYFP caspase activation sensor. The nuclear cdt1-KO expression serves as the readout for cell-cycle, and caspase activation is visualized by ECFP/EYFP ratiometric imaging. The image-based platform allowed imaging of growing spheres for prolonged periods in 3D-culture with excellent single-cell resolution through confocal microscopy. High-throughput screening (HTS) adaptation was achieved by targeting the caspase-sensor at the nucleus, which enabled the quantitation of cell death in 3D-models. The HTS using limited compound libraries, identified two lead compounds that induced caspase-activation both in 2D and 3D-cultures. This is the first report of an approach for noninvasive stain-free quantitative imaging of cell death and cell cycle with potential drug discovery applications.


Asunto(s)
Apoptosis , Transferencia Resonante de Energía de Fluorescencia , Apoptosis/fisiología , Caspasas/genética , Muerte Celular , División Celular , Transferencia Resonante de Energía de Fluorescencia/métodos
9.
Tumour Biol ; 43(1): 77-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33998569

RESUMEN

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Carcinogénesis/patología , Epigénesis Genética/genética , Galectinas/metabolismo , Neoplasias/patología , Apoptosis/fisiología , Proteínas Sanguíneas/genética , Carcinogénesis/genética , Transición Epitelial-Mesenquimal/genética , Galectinas/genética , Glicosilación , Humanos , Metástasis de la Neoplasia/patología , Neoplasias/genética
10.
ACS Chem Biol ; 15(3): 780-788, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32058690

RESUMEN

Rediscovery of known compounds and time consumed in identification, especially high molecular weight compounds with complex structure, have let down interest in drug discovery. In this study, whole-genome analysis of microbe and Global Natural Products Social (GNPS) molecular networking helped in initial understanding of possible compounds produced by the microbe. Genome data revealed 10 biosythethic gene clusters that encode for secondary metabolites with anticancer potential. NMR analysis of the pure compound revealed the presence of a four-ringed benz[a]anthracene, thus confirming angucycline; molecular networking further confirmed production of this class of compounds. The type II polyketide synthase gene identified in the microbial genome was matched with the urdamycin cluster by BLAST analysis. This information led to ease in identification of urdamycin E and a novel natural derivative, urdamycin V, purified from Streptomyces sp. OA293. Urdamycin E (Urd E) induced apoptosis and autophagy in cancer cell lines. Urd E exerted anticancer action through inactivation of the mTOR complex by preventing phosphorylation at Ser 2448 and Ser 2481 of mTORC1 and mTORC2, respectively. Significant reduction in phosphorylation of the major downstream regulators of both mTORC1 (p70s6k and 4e-bp1) and mTORC2 (Akt) were observed, thus further confirming complete inhibition of the mTOR pathway. Urd E presents itself as a novel mTOR inhibitor that employs a novel mechanism in mTOR pathway inhibition.


Asunto(s)
Aminoglicósidos/biosíntesis , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Estudio de Asociación del Genoma Completo/métodos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Secuencia de Aminoácidos , Aminoglicósidos/metabolismo , Antineoplásicos/química , Autofagia/efectos de los fármacos , Benzo(a)Antracenos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Regulación de la Expresión Génica , Humanos , Familia de Multigenes , Fosforilación/efectos de los fármacos , Unión Proteica , Transducción de Señal , Streptomyces/química , Streptomyces/genética
11.
Chem Biol Drug Des ; 94(1): 1352-1367, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31066219

RESUMEN

Chromones are recognized as privileged structures and useful templates for the design of novel compounds with promising pharmacological activity. Several reports implicate chromone scaffold as an antitumor agent. The present study highlights synthesis, docking, and potential activity of isoxazolylchromones, 3(a-f), a new class of compounds as potential agents exhibiting ERα antagonism and ERß agonism. Molecular docking studies determined the binding site of compounds 3(a-f) in ERα and ERß. All the analogues synthesized showed preferential cytotoxicity in ERα+ cell line (MCF-7) compared to ERα- cell line (MDA-MB-231). Among the analogues synthesized, analogue 3d exhibited increased cytotoxicity. ERα silencing experiments confirmed the ERα selective nature of ligands. Transactivation assay on compound 3d indicated the down-regulation of ERα luciferase reporter gene expression and induction of ERß GFP in the treated cells. Cell cycle analysis revealed an increase in sub-G0/G1 population on treatment with analogue 3d as compared to control. Similar to tamoxifen, 3d-induced cell death is mediated through an increase in ROS as evidenced by change in roGFP ratio. Interestingly, the compound 3d induced mitochondrial trans-membrane potential loss and caspase activation without indication of autophagy compared to tamoxifen that induced autophagy in the treated cells. Lack of significant autophagy and induction of ERß signaling by the new compound place them as a better ERα antagonist.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cromonas/química , Receptor alfa de Estrógeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Autofagia/efectos de los fármacos , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cromonas/metabolismo , Cromonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Humanos , Isoxazoles/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
12.
Redox Biol ; 20: 379-389, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408753

RESUMEN

Most toxic compounds including cancer drugs target mitochondria culminating in its permeabilization. Cancer drug-screening and toxicological testing of compounds require cost-effective and sensitive high-throughput methods to detect mitochondrial damage. Real-time methods for detection of mitochondrial damage are less toxic, allow kinetic measurements with good spatial resolution and are preferred over end-stage assays. Cancer cell lines stably expressing genetically encoded mitochondrial-targeted redox-GFP2 (mt-roGFP) were developed and validated for its suitability as a mitochondrial damage sensor. Diverse imaging platforms and flow-cytometry were utilized for ratiometric analysis of redox changes with known toxic and cancer drugs. Key events of cell death and mitochondrial damage were studied at single-cell level coupled with mt-roGFP. Cells stably expressing mt-roGFP and H2B-mCherry were developed for high-throughput screening (HTS) application. Most cancer drugs while inducing mitochondrial permeabilization trigger mitochondrial-oxidation that can be detected at single-cell level with mt-roGFP. The image-based assay using mt-roGFP outperformed other quantitative methods of apoptosis in ease of screening. Incorporation of H2B-mCherry ensures accurate and complete automated segmentation with excellent Z value. The results substantiate that most cancer drugs and known plant-derived antioxidants trigger cell-death through mitochondrial redox alterations with pronounced ratio change in the mt-roGFP probe. Real-time analysis of mitochondrial oxidation and mitochondrial permeabilization reveal a biphasic ratio change in dying cells, with an initial redox surge before mitochondrial permeabilization followed by a drastic increase in ratio after complete mitochondrial permeabilization. Overall, the results prove that mitochondrial oxidation is a reliable indicator of mitochondrial damage, which can be readily determined in live cells using mt-roGFP employing diverse imaging techniques. The assay described is highly sensitive, easy to adapt to HTS platforms and is a valuable resource for identifying cytotoxic agents that target mitochondria and also for dissecting cell signaling events relevant to redox biology.


Asunto(s)
Descubrimiento de Drogas , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citocromos c/metabolismo , Genes Reporteros , Humanos , Microscopía Confocal , Imagen Molecular , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno , Proteína X Asociada a bcl-2/metabolismo
13.
Sci Rep ; 8(1): 2810, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434241

RESUMEN

In cervical cancer, the association between HPV infection and dysregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTOR pathway) places mTOR as an attractive therapeutic target. The failure of current treatment modalities in advanced stages of this cancer and drawbacks of already available mTOR inhibitors demand for novel drug candidates. In the present study we identified the presence of a mTOR inhibitor in an active fraction of the ethyl acetate extract of Streptomyces sp OA293. The metabolites(s) in the active fraction completely inhibited mTORC1 and thereby suppressed activation of both of its downstream targets, 4E-BP1 and P70S6k, in cervical cancer cells. In addition, it also stalled Akt activation via inhibition of mTORC2. The mechanism of mTOR inhibition detailed in our study overcomes significant drawbacks of well known mTOR inhibitors such as rapamycin and rapalogs. The active fraction induced autophagy and Bax mediated apoptosis suggesting that mTOR inhibition resulted in programmed cell death of cancer cells. The molecular weight determination of the components in active fraction confirmed the absence of any previously known natural mTOR inhibitor. This is the first report of complete mTOR complex inhibition by a product derived from microbial source.


Asunto(s)
Productos Biológicos/farmacología , Streptomyces/química , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias del Cuello Uterino/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Streptomyces/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Eur J Cell Biol ; 97(1): 1-14, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29092745

RESUMEN

The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 - Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP - LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Neoplasias Ováricas/patología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Microscopía Confocal , Mitocondrias/ultraestructura , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas
15.
Cell Death Discov ; 3: 16101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28179996

RESUMEN

Apoptosis and necrosis are the two major forms of cell death mechanisms. Both forms of cell death are involved in several physiological and pathological conditions and also in the elimination of cancer cells following successful chemotherapy. Large number of cellular and biochemical assays have evolved to determine apoptosis or necrosis for qualitative and quantitative purposes. A closer analysis of the assays and their performance reveal the difficulty in using any of these methods as a confirmatory approach, owing to the secondary induction of necrosis in apoptotic cells. This highlights the essential requirement of an approach with a real-time analysis capability for discriminating the two forms of cell death. This paper describes a sensitive live cell-based method for distinguishing apoptosis and necrosis at single-cell level. The method uses cancer cells stably expressing genetically encoded FRET-based active caspase detection probe and DsRed fluorescent protein targeted to mitochondria. Caspase activation is visualized by loss of FRET upon cleavage of the FRET probe, while retention of mitochondrial fluorescence and loss of FRET probe before its cleavage confirms necrosis. The absence of cleavage as well as the retention of mitochondrial fluorescence indicates live cells. The method described here forms an extremely sensitive tool to visualize and quantify apoptosis and necrosis, which is adaptable for diverse microscopic, flow cytometric techniques and high-throughput imaging platforms with potential application in diverse areas of cell biology and oncology drug screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA