Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
IEEE Winter Conf Appl Comput Vis ; 2023: 1918-1927, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36865487

RESUMEN

Detection of melanocytes serves as a critical prerequisite in assessing melanocytic growth patterns when diagnosing melanoma and its precursor lesions on skin biopsy specimens. However, this detection is challenging due to the visual similarity of melanocytes to other cells in routine Hematoxylin and Eosin (H&E) stained images, leading to the failure of current nuclei detection methods. Stains such as Sox10 can mark melanocytes, but they require an additional step and expense and thus are not regularly used in clinical practice. To address these limitations, we introduce VSGD-Net, a novel detection network that learns melanocyte identification through virtual staining from H&E to Sox10. The method takes only routine H&E images during inference, resulting in a promising approach to support pathologists in the diagnosis of melanoma. To the best of our knowledge, this is the first study that investigates the detection problem using image synthesis features between two distinct pathology stainings. Extensive experimental results show that our proposed model outperforms state-of-the-art nuclei detection methods for melanocyte detection. The source code and pre-trained model are available at: https://github.com/kechunl/VSGD-Net.

2.
Diagnostics (Basel) ; 12(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35885617

RESUMEN

Invasive melanoma, a common type of skin cancer, is considered one of the deadliest. Pathologists routinely evaluate melanocytic lesions to determine the amount of atypia, and if the lesion represents an invasive melanoma, its stage. However, due to the complicated nature of these assessments, inter- and intra-observer variability among pathologists in their interpretation are very common. Machine-learning techniques have shown impressive and robust performance on various tasks including healthcare. In this work, we study the potential of including semantic segmentation of clinically important tissue structure in improving the diagnosis of skin biopsy images. Our experimental results show a 6% improvement in F-score when using whole slide images along with epidermal nests and cancerous dermal nest segmentation masks compared to using whole-slide images alone in training and testing the diagnosis pipeline.

3.
Comput Biol Med ; 146: 105504, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525068

RESUMEN

BACKGROUND: Amorphous calcifications noted on mammograms (i.e., small and indistinct calcifications that are difficult to characterize) are associated with high diagnostic uncertainty, often leading to biopsies. Yet, only 20% of biopsied amorphous calcifications are cancer. We present a quantitative approach for distinguishing between benign and actionable (high-risk and malignant) amorphous calcifications using a combination of local textures, global spatial relationships, and interpretable handcrafted expert features. METHOD: Our approach was trained and validated on a set of 168 2D full-field digital mammography exams (248 images) from 168 patients. Within these 248 images, we identified 276 image regions with segmented amorphous calcifications and a biopsy-confirmed diagnosis. A set of local (radiomic and region measurements) and global features (distribution and expert-defined) were extracted from each image. Local features were grouped using an unsupervised k-means clustering algorithm. All global features were concatenated with clustered local features and used to train a LightGBM classifier to distinguish benign from actionable cases. RESULTS: On the held-out test set of 60 images, our approach achieved a sensitivity of 100%, specificity of 35%, and a positive predictive value of 38% when the decision threshold was set to 0.4. Given that all of the images in our test set resulted in a recommendation of a biopsy, the use of our algorithm would have identified 15 images (25%) that were benign, potentially reducing the number of breast biopsies. CONCLUSIONS: Quantitative analysis of full-field digital mammograms can extract subtle shape, texture, and distribution features that may help to distinguish between benign and actionable amorphous calcifications.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Mama/diagnóstico por imagen , Mama/patología , Enfermedades de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Medición de Riesgo
4.
Neurooncol Adv ; 3(1): vdab004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33615222

RESUMEN

BACKGROUND: Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. METHODS: Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. RESULTS: We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. CONCLUSIONS: We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.

5.
Proc IAPR Int Conf Pattern Recogn ; 2020: 8727-8734, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36745147

RESUMEN

In this study, we propose the Ductal Instance-Oriented Pipeline (DIOP) that contains a duct-level instance segmentation model, a tissue-level semantic segmentation model, and three-levels of features for diagnostic classification. Based on recent advancements in instance segmentation and the Mask RCNN model, our duct-level segmenter tries to identify each ductal individual inside a microscopic image; then, it extracts tissue-level information from the identified ductal instances. Leveraging three levels of information obtained from these ductal instances and also the histopathology image, the proposed DIOP outperforms previous approaches (both feature-based and CNN-based) in all diagnostic tasks; for the four-way classification task, the DIOP achieves comparable performance to general pathologists in this unique dataset. The proposed DIOP only takes a few seconds to run in the inference time, which could be used interactively on most modern computers. More clinical explorations are needed to study the robustness and generalizability of this system in the future.

6.
JCO Clin Cancer Inform ; 4: 290-298, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32216637

RESUMEN

PURPOSE: Machine Learning Package for Cancer Diagnosis (MLCD) is the result of a National Institutes of Health/National Cancer Institute (NIH/NCI)-sponsored project for developing a unified software package from state-of-the-art breast cancer biopsy diagnosis and machine learning algorithms that can improve the quality of both clinical practice and ongoing research. METHODS: Whole-slide images of 240 well-characterized breast biopsy cases, initially assembled under R01 CA140560, were used for developing the algorithms and training the machine learning models. This software package is based on the methodology developed and published under our recent NIH/NCI-sponsored research grant (R01 CA172343) for finding regions of interest (ROIs) in whole-slide breast biopsy images, for segmenting ROIs into histopathologic tissue types and for using this segmentation in classifiers that can suggest final diagnoses. RESULT: The package provides an ROI detector for whole-slide images and modules for semantic segmentation into tissue classes and diagnostic classification into 4 classes (benign, atypia, ductal carcinoma in situ, invasive cancer) of the ROIs. It is available through the GitHub repository under the Massachusetts Institute of Technology license and will later be distributed with the Pathology Image Informatics Platform system. A Web page provides instructions for use. CONCLUSION: Our tools have the potential to provide help to other cancer researchers and, ultimately, to practicing physicians and will motivate future research in this field. This article describes the methodology behind the software development and gives sample outputs to guide those interested in using this package.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Programas Informáticos/normas , Neoplasias de la Mama/clasificación , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA