Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Int ; 186: 108645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615541

RESUMEN

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Asunto(s)
Acetilcisteína/análogos & derivados , Benceno , Islas de CpG , Metilación de ADN , Exposición Profesional , Humanos , Metilación de ADN/efectos de los fármacos , Masculino , Exposición Profesional/efectos adversos , Benceno/toxicidad , Adulto , China , Daño del ADN , Persona de Mediana Edad , Biomarcadores/orina , Acetilcisteína/orina , Proteínas Supresoras de Tumor/genética , Enzimas Reparadoras del ADN/genética
2.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563870

RESUMEN

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Asunto(s)
Pruebas de Carcinogenicidad , Transformación Celular Neoplásica , Neoplasias Colorrectales , Contaminantes Ambientales , Organoides , Animales , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/efectos de los fármacos , Pruebas de Carcinogenicidad/métodos , Organoides/efectos de los fármacos , Organoides/patología , Ratones , Contaminantes Ambientales/toxicidad , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inducido químicamente , Humanos , Carcinógenos/toxicidad , Intestinos/efectos de los fármacos , Intestinos/patología , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/patología , Relación Dosis-Respuesta a Droga
3.
Environ Pollut ; 346: 123564, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367693

RESUMEN

Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.


Asunto(s)
Benzo(a)pireno , Histonas , Humanos , Histonas/metabolismo , Benzo(a)pireno/toxicidad , Metilación , Inestabilidad Genómica , Células Epiteliales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Transl Cancer Res ; 12(10): 2582-2595, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37969391

RESUMEN

Background: The aberrant expression of the classical tumor suppressor gene p16 is a frequent event in lung cancer mainly due to the hypermethylation of its 5'-cytosine-phosphate-guanine-3' island (Cgi). However, whether methylation happens in other regions and how p16 expression and function are affected are largely unknown. Methods: Clustered Regularly Interspaced Short Palindromic Repeats/dCas9 (CRISPR/dCas9) technology was used for methylation editing at specific site of p16. The effects of methylation editing were detected by 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt (MTS), transwell migration and wound healing tests. Chromatin immnoprecipitation-quantitative polymerase chain reaction (CHIP-qPCR) was performed to explore the impact of Cgi shore methylation on the binding abilities of transcription factors (TFs) including YY1, SP1, ZNF148 and OTX2 to p16 gene. A rescue experiment was performed to verify the regulatory effect of OTX2 on p16. The negative relationship between p16 expression and the methylation level of Cgi shore in non-promoter region was further verified with datasets from The Cancer Genome Atlas (TCGA) program and lung adenocarcinoma (LUAD) patients' samples. Results: The suppressive effect of p16 Cgi shore methylation on its expression was demonstrated in both HEK293 and A549 cells using CRISPR/dCas9-mediated specific site methylation editing. Methylation of the Cgi shore in the p16 non-promoter region significantly decreased its expression and promoted cell growth and migration. The ability of OTX2 bound to p16 was significantly reduced by 19.35% after methylation modification. Over-expression of OTX2 in A549 cells partly reversed the inhibitory effect of methylation on p16 expression by 19.04%. The verification results with TCGA and LUAD patients' samples supported that the p16 Cgi shore is a key methylation regulatory region. Conclusions: Our findings suggested that methylation of the Cgi shore in the p16 non-promoter region can hamper the transcriptional activity of OTX2, leading to a reduction in the expression of p16, which might contribute to the development of lung cancer.

5.
Environ Health Perspect ; 131(7): 77006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37458712

RESUMEN

BACKGROUND: Chronic lung injury and dysregulated cellular homeostasis in response to particulate matter (PM) exposure are closely associated with adverse health effects. However, an effective intervention for preventing the adverse health effects has not been developed. OBJECTIVES: This study aimed to evaluate the protective effects of nicotinamide mononucleotide (NMN) supplementation on lung injury and elucidate the mechanism by which NMN improved immune function following subchronic PM exposure. METHODS: Six-week-old male C57BL/6J mice were placed in a real-ambient PM exposure system or filtered air-equipped chambers (control) for 16 wk with or without NMN supplementation in drinking water (regarded as Con-H2O, Exp-H2O, Con-NMN and Exp-NMN groups, respectively) in Shijiazhuang City, China (n=20/group). The effects of NMN supplementation (500mg/kg) on PM-induced chronic pulmonary inflammation were assessed, and its mechanism was characterized using single-cell transcriptomic sequencing (scRNA-seq) analysis of whole lung cells. RESULTS: The NMN-treated mice exhibited higher NAD+ levels in multiple tissues. Following 16-wk PM exposure, slightly less pulmonary inflammation and less collagen deposition were noted in mice with NMN supplementation in response to real-ambient PM exposure (Exp-NMN group) compared with the Exp-H2O group (all p<0.05). Mouse lung tissue isolated from the Exp-NMN group was characterized by fewer neutrophils, monocyte-derived cells, fibroblasts, and myeloid-derived suppressor cells induced by subchronic PM exposure as detected by scRNA-seq transcriptomic analysis. The improved immune functions were further characterized by interleukin-17 signaling pathway inhibition and lower secretion of profibrotic cytokines in the Exp-NMN group compared with the Exp-H2O group. In addition, reduced proportions of differentiated myofibroblasts and profibrotic interstitial macrophages were identified in the NMN-supplemented mice in response to PM exposure. Furthermore, less immune function suppression and altered differentiation of pathological cell phenotypes NMN was related to intracellular lipid metabolism activation. DISCUSSION: Our novel findings suggest that NMN supplementation mitigated PM-induced lung injury by regulating immune functions and improving lipid metabolism in male mice, providing a putative intervention method for prevention of human health effects associated with PM exposure. https://doi.org/10.1289/EHP12259.


Asunto(s)
Lesión Pulmonar , Neumonía , Ratones , Masculino , Humanos , Animales , Mononucleótido de Nicotinamida/efectos adversos , Mononucleótido de Nicotinamida/metabolismo , Material Particulado/toxicidad , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Suplementos Dietéticos
6.
Environ Int ; 178: 108113, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506515

RESUMEN

Recent population and animal studies have revealed a correlation between fat content and the severity of benzene-induced hematologic toxicity. However, the precise impact of lipid deposition on benzene-induced hematotoxicity and the underlying mechanisms remain unclear. In this study, we established a mouse model with moderate lipid accumulation by subjecting the mice to an 8-week high-fat diet (45% kcal from fat, HFD), followed by 28-day inhalation of benzene at doses of 0, 1, 10, and 100 ppm. The results showed that benzene exposure caused a dose-dependent reduction of peripheral white blood cell (WBC) counts in both diet groups. Notably, this reduction was less pronounced in the HFD-fed mice, suggesting that moderate lipid accumulation mitigates benzene-related hematotoxicity. To investigate the molecular basis for this effect, we performed bioinformatics analysis of high-throughput transcriptome sequencing data, which revealed that moderate lipid deposition alters mouse metabolism and stress tolerance towards xenobiotics. Consistently, the expression of key metabolic enzymes, such as Cyp2e1 and Gsta1, were upregulated in the HFD-fed mice upon benzene exposure. Furthermore, we utilized a real-time exhaled breath detection technique to monitor exhaled benzene metabolites, and the results indicated that moderate lipid deposition enhanced metabolic activation and increased the elimination of benzene metabolites. Collectively, these findings demonstrate that moderate lipid deposition confers reduced susceptibility to benzene-induced hematotoxicity in mice, at least in part, by accelerating benzene metabolism and clearance.


Asunto(s)
Benceno , Leucocitos , Ratones , Animales , Benceno/toxicidad , Aceleración , Lípidos , Metabolismo de los Lípidos
7.
Environ Pollut ; 331(Pt 2): 121887, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236586

RESUMEN

Cadmium is an environmental pollutant that has extensive deleterious effects. However, the mechanisms underlying the hepatotoxicity induced by long-term exposure to cadmium remained undefined. In the present study, we explored the role of m6A methylation in the development of cadmium-induced liver disease. We showed a dynamic change of RNA methylation in liver tissue from mice administrated with cadmium chloride (CdCl2) for 3, 6 and 9 months, respectively. Particularly, the METTL3 expression was declined in a time-dependent manner, associated with the degree of liver injury, indicating the involvement of METTL3 in hepatotoxicity induced by CdCl2. Moreover, we established a mouse model with liver-specific over-expression of Mettl3 and administrated these mice with CdCl2 for 6 months. Notably, METTL3 highly expressed in hepatocytes attenuated CdCl2-induced steatosis and liver fibrosis in mice. In vitro assay also showed METTL3 overexpression ameliorated the CdCl2-induced cytotoxicity and activation of primary hepatic stellate cells. Furthermore, transcriptome analysis identified 268 differentially expressed genes both in mice liver tissue treated with CdCl2 for 3 months and 9 months. Among them, 115 genes were predicted to be regulated by METTL3 determined by m6A2Target database. Further analysis revealed the perturbation of metabolic pathway, glycerophospholipid metabolism, ErbB signaling pathway, Hippo signaling pathway, and choline metabolism in cancer, and circadian rhythm, led to hepatotoxicity induced by CdCl2. Collectively, our findings reveal new insight into the crucial role of epigenetic modifications in hepatic diseases caused by long-term exposure to cadmium.


Asunto(s)
Cadmio , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Metiltransferasas , Animales , Ratones , Cadmio/toxicidad , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hepatocitos , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo
8.
Part Fibre Toxicol ; 20(1): 10, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069663

RESUMEN

BACKGROUND: Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS: Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-ß-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS: These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Lesión Pulmonar , Ratones , Animales , Material Particulado/toxicidad , Diabetes Mellitus Tipo 1/inducido químicamente , Lesión Pulmonar/inducido químicamente , Ratones Endogámicos C57BL , Glucemia , Obesidad/inducido químicamente , Dieta Alta en Grasa/efectos adversos
9.
Environ Sci Technol ; 57(17): 6854-6864, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071573

RESUMEN

Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Mutación , Células Epiteliales , Material Particulado/efectos adversos , Genómica , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Antígenos de Histocompatibilidad Menor/efectos adversos , Antígenos de Histocompatibilidad Menor/metabolismo
10.
Sci Total Environ ; 870: 161903, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36731555

RESUMEN

Particulate matter (PM)-induced cardiometabolic disorder contributes to the progression of cardiac diseases, but its epigenetic mechanisms are largely unknown. This study used bioinformatic analysis, in vivo and in vitro multiple models to investigate the role of PM-induced cardiac fibroblast growth factor 1 (FGFR1) methylation and its impact on cardiomyocyte lipid metabolic disruption. Bioinformatic analysis revealed that FGFR1 was associated with cardiac pathologies, mitochondrial function and metabolism, supporting the possibility that FGFR1 may play regulatory roles in PM-induced cardiac functional impairment and lipid metabolism disorders. Individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models were used to expose C57/BL6 mice for six and fifteen weeks. The results showed that PM induced cardiac lipid metabolism disorder, DNA nucleotide methyltransferases (DNMTs) alterations and FGFR1 expression declines in mouse heart. Lipidomics analysis revealed that carnitines, phosphoglycerides and lysophosphoglycerides were most significantly affected by PM exposure. At the cellular level, AC16 cells treated with FGFR1 inhibitor (PD173074) led to impaired mitochondrial and metabolic functions in cardiomyocytes. Inhibition of DNA methylation in cells by 5-AZA partially restored the FGFR1 expression, ameliorated cardiomyocyte injury and mitochondrial functions. These changes involved alterations in AMP-activated protein kinase (AMPK)-peroxisome proliferator activated receptors gamma, coactivator 1 alpha (PGC1α) pathways. Bisulfite sequencing PCR (BSP) and DNA methylation specific PCR (MSP) confirmed that PM exposure induced FGFR1 gene promoter region methylation. These results suggested that, by inducing FGFR1 methylation, PM exposure would affect cardiac injury and deranged lipid metabolism. Overexpression of FGFR1 in mouse heart using adeno-associated virus 9 (AAV9) effectively alleviated PM-induced cardiac impairment and metabolic disorder. Our findings identified that FGFR1 methylation might be one of the potential indicators for PM-induced cardiac mitochondrial and metabolic dysfunction, providing novel insights into underlying PM-related cardiotoxic mechanisms.


Asunto(s)
Cardiopatías , Material Particulado , Ratones , Animales , Material Particulado/toxicidad , Material Particulado/metabolismo , Metabolismo de los Lípidos , Miocitos Cardíacos , Metilación de ADN
11.
Environ Pollut ; 319: 120981, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587786

RESUMEN

Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/metabolismo , Material Particulado/toxicidad , Material Particulado/metabolismo , Células Epiteliales/patología , Transformación Celular Neoplásica/metabolismo
12.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336710

RESUMEN

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , NADP Transhidrogenasas , Humanos , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Cisplatino/farmacología , ADN , Metilación de ADN , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , NAD/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Sirtuina 1/metabolismo
13.
Front Endocrinol (Lausanne) ; 13: 937281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909554

RESUMEN

Benzene is a ubiquitous pollutant and mainly accumulates in adipose tissue which has important roles in metabolic diseases. The latest studies reported that benzene exposure was associated with many metabolic disorders, while the effect of benzene exposure on adipose tissue remains unclear. We sought to investigate the effect using in vivo and in vitro experiments. Male adult C57BL/6J mice were exposed to benzene at 0, 1, 10 and 100 mg/kg body weight by intragastric gavage for 4 weeks. Mature adipocytes from 3T3-L1 cells were exposed to hydroquinone (HQ) at 0, 1, 5 and 25 µM for 24 hours. Besides the routine hematotoxicity, animal experiments also displayed significant body fat content decrease from 1 mg/kg. Interestingly, the circulating non-esterified fatty acid (NEFA) level increased from the lowest dose (ptrend < 0.05). Subsequent analysis indicated that body fat content decrease may be due to atrophy of white adipose tissue (WAT) upon benzene exposure. The average adipocyte area of WAT decreased significantly even from 1 mg/kg with no significant changes in total number of adipocytes. The percentages of small and large adipocytes in WAT began to significantly increase or decrease from 1 mg/kg (all p < 0.05), respectively. Critical genes involved in lipogenesis and lipolysis were dysregulated, which may account for the disruption of lipid homeostasis. The endocrine function of WAT was also disordered, manifested as significant decrease in adipokine levels, especially the leptin. In vitro cell experiments displayed similar findings in decreased fat content, dysregulated critical lipid metabolism genes, and disturbed endocrine function of adipocytes after HQ treatment. Pearson correlation analysis showed positive correlations between white blood cell (WBC) count with WAT fat content and plasma leptin level (r = 0.330, 0.344, both p < 0.05). This study shed light on the novel aspect that benzene exposure could induce lipodystrophy and disturb endocrine function of WAT, and the altered physiology of WAT might in turn affect benzene-induced hematotoxicity and metabolic disorders. The study provided new insight into understanding benzene-induced toxicity and the relationship between benzene and adipose tissue.


Asunto(s)
Leptina , Lipodistrofia , Tejido Adiposo Blanco/metabolismo , Animales , Benceno/metabolismo , Benceno/toxicidad , Leptina/metabolismo , Lipodistrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Part Fibre Toxicol ; 19(1): 42, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739565

RESUMEN

BACKGROUND: Long-term exposure to fine particulate matter (PM2.5) increases susceptibility to chronic respiratory diseases, including inflammation and interstitial fibrosis. However, the regulatory mechanisms by which the immune response mediates the initiation of pulmonary fibrosis has yet to be fully characterized. This study aimed to illustrate the interplay between different cell clusters and key pathways in triggering chronic lung injuries in mice following PM exposure. RESULTS: Six-week-old C57BL/6J male mice were exposed to PM or filtered air for 16 weeks in a real-ambient PM exposure system in Shijiazhuang, China. The transcriptional profiles of whole lung cells following sub-chronic PM exposure were characterized by analysis of single-cell transcriptomics. The IL-17A knockout (IL-17A-/-) mouse model was utilized to determine whether the IL-17 signaling pathway mediated immune dysregulation in PM-induced chronic lung injuries. After 16-week PM exposure, chronic lung injuries with excessive collagen deposition and increased fibroblasts, neutrophils, and monocytes were noted concurrent with a decreased number of major classes of immune cells. Single-cell analysis showed that activation of the IL-17 signaling pathway was involved in the progression of pulmonary fibrosis upon sub-chronic PM exposure. Depletion of IL-17A led to significant decline in chronic lung injuries, which was mainly triggered by reduced recruitment of myeloid-derived suppressor cells (MDSCs) and downregulation of TGF-ß. CONCLUSION: These novel findings demonstrate that immunosuppression via the IL-17A pathway plays a critical role in the initiation of chronic lung injuries upon sub-chronic PM exposure.


Asunto(s)
Interleucina-17 , Lesión Pulmonar , Fibrosis Pulmonar , Animales , Interleucina-17/genética , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado/análisis , Material Particulado/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Transcriptoma
15.
J Biol Chem ; 298(5): 101885, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367211

RESUMEN

The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular , Receptor de Androstano Constitutivo/metabolismo , Eritropoyetina , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Eritropoyetina/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Desnudos
16.
Toxicology ; 469: 153133, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183672

RESUMEN

To elaborate the molecular mechanism underlying the hepatotoxicity induced by chronic exposure to cadmium (Cd), a mouse model with hepatocyte-specific deletion of Ppp2r1a (encoding protein phosphatase 2 A Aα subunit, PP2A Aα) gene was used to investigate the effect of cadmium exposure on liver injury. The wild type littermates (WT) and PP2A Aα-/- mice (KO) were treated with cadmium chloride (CdCl2) at concentrations of 0 mg/L, 10 mg/L, 100 mg/L in drinking water for 3, 6 and 9 months (KO mice only for 9 months), respectively. The pathological findings were characterized by progressive inflammation, steatosis, and liver fibrosis upon treatment of CdCl2 in a dose-response and time-dependent manner. Notably, PP2A Aα depletion leads to a more profound liver injury induced by CdCl2 treatment. The transcriptome analysis in livers of KO mice revealed 20 differentially expressed microRNAs (miRNAs) appeared in both 3- and 9-month. Particularly, the alterations of miR-34a-5p, miR-345-5p, and miR-30e-5p expressions were implicated in the development of liver disease and correlated with the degree of liver injury induced by cadmium treatment. Further analysis indicated that miR-34a-5p, miR-345-5p, and miR-30e-5p might be involved in CdCl2-induced liver injury, in part by dysregulation of lipid metabolism and inflammation. The in vitro studies showed that miR-34a-5p was involved in regulation of CdCl2-induced cytotoxicity through directly targeted adiponectin receptor 2 (AdipoR2) mRNA. Taken together, we identified that specific miRNAs were implicated in hepatotoxicity induced by chronic exposure to CdCl2. These findings also provide new insight into the role of PP2A in regulation of miRNAs-mediated liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARNs , Animales , Cadmio/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Inflamación , Hígado , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteína Fosfatasa 2/genética
17.
Toxicol Appl Pharmacol ; 436: 115880, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016909

RESUMEN

Intestinal injury assessment of hexavalent chromium (Cr-VI) in humans is crucial for quantifying assessment of adverse health risk posed by the intake of Cr (VI)-contaminated water. To overcome the deficiency in simulating human gastric reduction and intestinal absorption, we modified the constituents of simulated gastric fluid in in vitro digestion method by adding reductants glutathione (18 µM) and ascorbic acid (180 µM), which incorporated with human intestinal epithelial model to construct an in vitro gastrointestinal digestion (IVGD) model for intestinal injury assessment. Cr-VI bioaccessibility results from IVGD model showed that weak gastric acidity significantly increased the intestinal accessible Cr-VI dose by 22.41-38.43 folds. The time-course intestinal absorption indicated prolongation of intestinal exposure destroyed the intestinal epithelium, and 24 h after Cr-VI treatment was a good time point to perform intestinal absorption and toxicity assessment. A series of cell-based bioassays provided initial warning of adverse effect, suggesting that epithelial integrity exhibited greatest sensitivity to Cr-VI exposure and might be used as a sensitive marker for the toxicity assessment of oral exposure to Cr-VI. Notably, this study provides a feasible strategy for delineation of Cr-VI biotransformation and intestinal injury following ingestion exposure, which contributes to address the toxicity data gap of low-dose exposure in humans and puts forward a reference for intestinal toxicity assessment of other chemicals.


Asunto(s)
Cromo/efectos adversos , Digestión/efectos de los fármacos , Enfermedades Intestinales/inducido químicamente , Intestinos/efectos de los fármacos , Biotransformación/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Células HT29 , Humanos , Contaminantes Químicos del Agua/efectos adversos
18.
Ecotoxicol Environ Saf ; 232: 113248, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35093813

RESUMEN

Exposure to fine particulate matter (PM2.5) could damage multiple organs and systems. Recent epidemiological studies have shown that PM2.5 can disrupt dynamic balance of thyroid hormone (TH). However, the underlying mechanism by which PM2.5 interferes with TH remains unclear. This study evaluated the role of Gli-similar3 (GLIS3) in the effect of PM2.5 on TH synthesis in mice using a real-ambient exposure system, in Shijiazhuang City, Hebei Province. The PM2.5exposure group (PM) and filtered air group (FA) were placed in the exposure device for four and eight weeks. The results showed that the PM2.5 exposure altered the structure of the thyroid gland. Moreover, after PM2.5 exposure for eight weeks, the exposure level of free thyroxine (FT4) increased and the expression level of thyroid stimulating hormone (TSH) decreased in serum of mice. In addition, PM2.5 exposure significantly increased the expression of proteins related to thyroid hormone synthesis, such as sodium iodide transporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG). Next, we found that GLIS3 and thyroid transcription factor Paired box 8 (PAX8) also increased after PM2.5 exposure. In order to further explore the potential molecular mechanism, we carried out transcriptome sequencing. KEGG analysis of the top 10 pathways revealed that the Ras-associated protein 1 (Rap1) signaling pathway could activate transcription factors and is related to thyroid cell survival. Additionally, PM2.5 exposure significantly increased the protein levels of Rap1 and its active form (Rap1 +GTP). We speculate that the active state of Rap1 is believed to be involved in activating the expression of transcription factor GLIS3. In conclusion, PM2.5 exposure induces histological changes in the thyroid gland and thyroid dysfunction in mice. The exposure activates GLIS3 through the Rap1/PI3K/AKT pathway to promote the expression of proteins related to thyroid hormone synthesis, leading to increased dysregulating TH homeostasis.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Glándula Tiroides , Animales , Proteínas de Unión al ADN/metabolismo , Homeostasis , Ratones , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Transactivadores/metabolismo
19.
J Hazard Mater ; 424(Pt C): 127624, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740159

RESUMEN

To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.


Asunto(s)
Lesión Pulmonar , Proteínas Quinasas S6 Ribosómicas 70-kDa , Animales , Lesión Pulmonar/inducido químicamente , Macrófagos Alveolares , Ratones , Material Particulado/toxicidad , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
20.
J Hazard Mater ; 426: 128089, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34933256

RESUMEN

The dynamic network biomarkers (DNBs) are designed to identify the tipping point and specific molecules in initiation of PM2.5-induced lung cancers. To discover early-warning signals, we analyzed time-series gene expression datasets over a course of PM2.5 organic extraction-induced human bronchial epithelial (HBE) cell transformation (0th~16th week). A composition index of DNB (CIDNB) was calculated to determine correlations and fluctuations in molecule clusters at each timepoint. We identified a group of genes with the highest CIDNB at the 10th week, implicating a tipping point and corresponding DNBs. Functional experiments revealed that manipulating respective DNB genes at the tipping point led to remarkable changes in malignant phenotypes, including four promoters (GAB2, NCF1, MMP25, LAPTM5) and three suppressors (BATF2, DOK3, DAP3). Notably, co-altered expression of seven core DNB genes resulted in an enhanced activity of malignant transformation compared to effects of single-gene manipulation. Perturbation of pathways (EMT, HMGB1, STAT3, NF-κB, PTEN) appeared in HBE cells at the tipping point. The core DNB genes were involved in regulating lung cancer cell growth and associated with poor survival, indicating their synergistic effects in initiation and development of lung cancers. These findings provided novel insights into the mechanism of dynamic networks attributable to PM2.5-induced cell transformation.


Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Biomarcadores , Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA