Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 113072, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241514

RESUMEN

BACKGROUND: Aberrant differentiation of Th17 cells has been identified as a critical factor in the development of rheumatoid arthritis (RA). BLIMP1 plays a key role in regulating plasma cell differentiation, T helper cell differentiation and Treg cell differentiation. Treatment with exosome injection or bone marrow mesenchymal stem cell (BMSC) transplantation reduce joint damage in RA. But the precise regulatory mechanisms remain unclear. METHODS: We injected BMSC-derived exosomes into RA mice, and then performed histological analysis on mouse ankle joints. We cultured CD4+ T cells in vitro, then added exosomes with or without si-TUG1 and induced the differentiation of Th17 cells and Treg cells, and then we used flow cytometry to detect the ratio of Th17 cells and Treg cells. Furthermore, we injected exosomes into sh-NC or sh-BLIMP1-treated RA mice, and then performed histological analysis on the ankle joints. RESULT: The results of our study demonstrate that exosome treatment decreased the proportion of differentiated Th17 cells, while increasing the proportion of Treg cells. And we observed that the Exo si-TUG1 group had an increased proportion of Th17 cells and a decreased proportion of Treg cells. We observed an increase in BLIMP1 expression in both the peripheral blood of mice and in CD4+ T cells cultured in vitro in the Exo group. Conversely, the Exo si-TUG1 group showed a decrease in BLIMP1 expression. Notably, inhibiting BLIMP1 expression led to the reversal of the therapeutic effects of exosomes. CONCLUSION: Our findings suggest that BMSC-derived exosomes promote the expression of BLIMP1 through Lnc TUG1-carrying exosomes, which may modulate the balance between Th17 cells and Treg cells. This mechanism ultimately alleviates damage caused by RA, suggesting that BMSC-derived exosomes enriched in Lnc TUG1 hold promise as a potential therapeutic approach for treating RA.

2.
Burns Trauma ; 12: tkae035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855574

RESUMEN

Background: Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods: A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results: NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions: NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.

3.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37581847

RESUMEN

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas Proto-Oncogénicas c-akt , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Autofagia
4.
Neural Regen Res ; 18(12): 2733-2742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449638

RESUMEN

Spinal cord injury is a challenge in orthopedics because it causes irreversible damage to the central nervous system. Therefore, early treatment to prevent lesion expansion is crucial for the management of patients with spinal cord injury. Bexarotene, a type of retinoid, exerts therapeutic effects on patients with cutaneous T-cell lymphoma and Parkinson's disease. Bexarotene has been proven to promote autophagy, but it has not been used in the treatment of spinal cord injury. To investigate the effects of bexarotene on spinal cord injury, we established a mouse model of T11-T12 spinal cord contusion and performed daily intraperitoneal injection of bexarotene for 5 consecutive days. We found that bexarotene effectively reduced the deposition of collagen and the number of pathological neurons in the injured spinal cord, increased the number of synapses of nerve cells, reduced oxidative stress, inhibited pyroptosis, promoted the recovery of motor function, and reduced death. Inhibition of autophagy with 3-methyladenine reversed the effects of bexarotene on spinal cord injury. Bexarotene enhanced the nuclear translocation of transcription factor E3, which further activated AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signaling pathways. Intravenous injection of transcription factor E3 shRNA or intraperitoneal injection of compound C, an AMP-activated protein kinase blocker, inhibited the effects of bexarotene. These findings suggest that bexarotene regulates nuclear translocation of transcription factor E3 through the AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signal pathways, promotes autophagy, decreases reactive oxygen species level, inhibits pyroptosis, and improves motor function after spinal cord injury.

5.
ACS Nano ; 17(15): 14494-14507, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37485850

RESUMEN

An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Receptor de Muerte Celular Programada 1 , ADN Complementario , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral
6.
Int Immunopharmacol ; 118: 110059, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001384

RESUMEN

Plastic surgery frequently employs random skin flaps. However, its clinical applicability is constrained by flap necrosis brought on by ischemia-reperfusion damage. Flap survival is aided by rosuvastatin, a naturally occurring flavonoid primarily obtained from plants. In this research, we looked into the processes mediating the effects of rosuvastatin on flap survival. All experimental mice were randomly assigned to three groups: control, rosuvastatin, and 3-methyladenine (3MA) plus rosuvastatin. These groups were, respectively, treated with dimethyl sulfoxide solution, rosuvastatin, and rosuvastatin combined with 3MA. After that, the animals were euthanized so that histology and protein analyses could determine the extent of angiogenesis, pyroptosis, oxidative stress, and autophagy. In addition to lessening tissue edema, rosuvastatin promoted the survival of the skin flap. Rosuvastatin also promoted angiogenesis, reduced oxidative stress, induced autophagy, and reduced pyroptosis. According to the study's findings, rosuvastatin increases angiogenesis, prevents pyroptosis, and reduces oxidative stress by inducing autophagy, which improves the survival rate of random skin flaps.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Piel , Ratas , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Rosuvastatina Cálcica/farmacología , Rosuvastatina Cálcica/uso terapéutico , Rosuvastatina Cálcica/metabolismo , Piel/patología , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Autofagia
7.
Biomater Sci ; 10(13): 3547-3558, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35616096

RESUMEN

Due to its tumor-specificity and limited side effects, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown great potential in cancer treatments. However, the short half-life of TRAIL protein and the poor death receptor (DR) expression of cancer cells severely compromise the therapeutic outcomes of TRAIL in clinical studies. Herein, a novel ROS-dependent TRAIL-sensitizing nanoplatform, CPT MV, with a Ce6-PLGA core and a TRAIL-modified cell membrane shell was explored to improve the in vivo circulation stability of TRAIL and to amplify TRAIL-induced apoptosis. CPT MV could produce ROS in the targeted cells upon laser irradiation to improve death receptor (DR)-5 expression and trigger Cyt c release from mitochondria. When engaged with TRAIL, the up-regulated DR5 could recruit more Fas-associated death domain (FADD) to transport the extrinsic apoptotic signal to the initiator caspase (caspase 8) and then the executioner caspase (caspase 3), while leaked Cyt c could trigger the intrinsic apoptotic pathway to further strengthen TRAIL-induced apoptosis. Therefore, the designed CPT MV could enhance TRAIL-mediated apoptosis driven by photo-triggered oxidative stress, which provides a very promising approach to clinically overcome tumor resistance to TRAIL therapy.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Citocromos c/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
8.
Acta Biomater ; 146: 406-420, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470078

RESUMEN

Despite huge potentials of NK cells in adoptive cell therapy (ACT), formidable physical barriers of the tumor tissue and deficiency of recognizing signals on tumor cells severely prevent NK cell infiltrating, activating and killing performances. Herein, a nano-immunomodulator AuNSP@αCD16 (CD16 antibody encoding plasmid) is explored to remodel the tumor microenvironment (TME) for improving the antitumor effects of adoptive NK cells. The as-prepared AuNSP, with a seaurchin-like gold core and a cationic polymer shell, exhibited a high gene transfection efficiency and a stable NIR-II photothermal capacity. The AuNSP could trigger mild photothermal intervention to partly destroy tumors and collapse the dense physical barriers, making a permeable TME for NK cell infiltration. What's more, the AuNSP could achieve αCD16 gene transfection to modify tumor surface with CD16 antibody, marking a unique structure on tumor cells for NK cell recognition and then lead to strong NK cell activation by CD16-mediated antibody-dependent cellular cytotoxicity (ADCC). As expected, the designed AuNSP@αCD16 induced an immune-favorable TME for NK cell performing killing functions against solid tumors, increasing the release of cytolytic granules and proinflammatory cytokines, which ultimately achieved a robustly boosted NK cell-based immunotherapy. Hence, the AuNSP@αCD16-mediated TME reconstituting strategy provides a substantial perspective for NK-based ACT on solid tumors. STATEMENT OF SIGNIFICANCE: In adoptive cell therapy (ACT), natural killer (NK) cells exhibit greater off-the-shelf utility and improved safety comparing with T cells, but the efficacy of NK cell therapy is severely compromised by formidable physical barriers of the tumor tissue and deficiency of NK cell recognizing signals on tumor cells. Herein, a nano-immunomodulator AuNSP@αCD16, with the abilities of inducing mild photothermal intervention and modifying the tumor cell surface with αCD16, is explored to reconstruct an infiltration-favorable and activation-facilitating tumor microenvironment for NK cells to perform killing functions. Such a simple and safe strategy is believed as a very promising candidate for future NK-based ACT.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Citotoxicidad Inmunológica , Oro/metabolismo , Humanos , Factores Inmunológicos , Inmunoterapia , Células Asesinas Naturales , Neoplasias/patología , Transfección , Microambiente Tumoral
9.
J Nanobiotechnology ; 19(1): 204, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238297

RESUMEN

BACKGROUND: Photodynamic therapy (PDT), a typical reactive oxygen species (ROS)-dependent treatment with high controllability, has emerged as an alternative cancer therapy modality but its therapeutic efficacy is still unsatisfactory due to the limited light penetration and constant oxygen consumption. With the development of another ROS-dependent paradigm ferroptosis, several efforts have been made to conquer the poor efficacy by combining these two approaches; however the biocompatibility, tumor-targeting capacity and clinical translation prospect of current studies still exist great concerns. Herein, a novel hypoxia-responsive nanoreactor BCFe@SRF with sorafenib (SRF) loaded inside, constructed by covalently connecting chlorin e6 conjugated bovine serum albumin (BSA-Ce6) and ferritin through azobenzene (Azo) linker, were prepared to offer unmatched opportunities for high-efficient PDT and ferroptosis synergistic therapy. RESULTS: The designed BCFe@SRF exhibited appropriate size distribution, stable dispersity, excellent ROS generation property, controllable drug release capacity, tumor accumulation ability, and outstanding biocompatibility. Importantly, the BCFe@SRF could be degraded under hypoxia environment to release BSA-Ce6 for laser-triggered PDT, ferritin for iron-catalyzed Fenton reaction and SRF for tumor antioxidative defense disruption. Meanwhile, besides PDT effects, it was found that BCFe@SRF mediated treatment upon laser irradiation in hypoxic environment not only could accelerate lipid peroxidation (LPO) generation but also could deplete intracellular glutathione (GSH) and decrease glutathione peroxidase (GPX4) expression, which was believed as three symbolic events during ferroptosis. All in all, the BCFe@SRF nanoreactor, employing multiple cascaded pathways to promote intracellular ROS accumulation, presented remarkably outstanding antitumor effects both in vitro and in vivo. CONCLUSION: BCFe@SRF could serve as a promising candidate for synergistic PDT and ferroptosis therapy, which is applicable to boost oxidative damage within tumor site and will be informative to future design of ROS-dependent therapeutic nanoplatforms.


Asunto(s)
Ferroptosis/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Animales , Línea Celular Tumoral , Clorofilidas , Liberación de Fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Nanotecnología , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Porfirinas
10.
Oncotarget ; 7(3): 2629-45, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26625313

RESUMEN

Bladder cancer (BC) is distinguished by high rate of recurrence after surgery, but the underlying mechanisms remain poorly understood. Here we performed the whole-exome sequencing of 37 BC individuals including 20 primary and 17 recurrent samples in which the primary and recurrent samples were not from the same patient. We uncovered that MLL, EP400, PRDM2, ANK3 and CHD5 exclusively altered in recurrent BCs. Specifically, the recurrent BCs and bladder cancer cells with MLL mutation displayed increased histone H3 tri-methyl K4 (H3K4me3) modification in tissue and cell levels and showed enhanced expression of GATA4 and ETS1 downstream. What's more, MLL mutated bladder cancer cells obtained with CRISPR/Cas9 showed increased ability of drug-resistance to epirubicin (a chemotherapy drug for bladder cancer) than wild type cells. Additionally, the BC patients with high expression of GATA4 and ETS1 significantly displayed shorter lifespan than patients with low expression. Our study provided an overview of the genetic basis of recrudescent bladder cancer and discovered that genetic alterations of MLL were involved in BC relapse. The increased modification of H3K4me3 and expression of GATA4 and ETS1 would be the promising targets for the diagnosis and therapy of relapsed bladder cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , N-Metiltransferasa de Histona-Lisina/genética , Mutación/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Apoptosis , Western Blotting , Estudios de Casos y Controles , Proliferación Celular , Inmunoprecipitación de Cromatina , Femenino , Factor de Transcripción GATA4/genética , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Recurrencia Local de Neoplasia/patología , Pronóstico , Proteína Proto-Oncogénica c-ets-1/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Transgenic Res ; 24(6): 1029-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26510874

RESUMEN

Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic ß-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.


Asunto(s)
Animales Modificados Genéticamente/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/sangre , Síndrome de Laron/etiología , Receptores de Somatotropina/genética , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Femenino , Genes Dominantes , Humanos , Síndrome de Laron/metabolismo , Síndrome de Laron/patología , Receptores de Somatotropina/metabolismo , Transducción de Señal , Porcinos , Porcinos Enanos
12.
Sci Rep ; 5: 8997, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25757764

RESUMEN

The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway has been identified as an important pathway in renal cell carcinoma (RCC). We have reported a nonsense mutation in PIK3R1, which encodes the regulatory subunit of PI3K, in a metastatic RCC (mRCC), while the mutation was absent in the corresponding primary RCC (pRCC). To identify the function of PIK3R1 in RCC, we examined its expression in normal kidney, pRCC and mRCC by immunohistochemistry and real-time polymerase chain reaction. The expression of PIK3R1 significantly decreased in pRCC and was further reduced in mRCC compared with normal tissue. Besides, its expression levels were negatively correlated with T-category of tumor stage. Additionally, 786-O and A-704 cells with PIK3R1 depletion introduced by CRISPR/Cas9 system displayed enhanced proliferation, migration and epithelial-mesenchymal transition (EMT), and acquired a stem-like phenotype. Moreover, the PIK3R1 depletion promoted the phosphorylation of AKT in the cells. The knockdown of AKT by shRNA reduced p-GSK3ß and CTNNB1 expression in the cells, while the depletion of CTNNB1 impaired stem-like phenotype of the cells. Overall, PIK3R1 down-regulation in RCC promotes propagation, migration, EMT and stem-like phenotype in renal cancer cells through the AKT/GSK3ß/CTNNB1 pathway, and may contribute to progression and metastasis of RCC.


Asunto(s)
Transición Epitelial-Mesenquimal , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase Ia , Progresión de la Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Técnicas de Inactivación de Genes , Glucógeno Sintasa Quinasa 3 beta , Haplotipos , Humanos , Neoplasias Renales/genética , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Vía de Señalización Wnt
13.
Transgenic Res ; 24(3): 433-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25448263

RESUMEN

The angiotensin I converting enzyme 2 (ACE2) is a key factor in the maintenance of intestinal homeostasis. Dysregulation of homeostasis can lead to inflammation of the colon (colitis), which can cause life-threatening enfeeblement or even cancer. Animal models are valuable surrogates in deciphering the pathology behind such human conditions and for screening of putative therapeutic targets or treatment paradigms. However, development of disease models can be time-consuming and technical demanding, which might hamper their application-value. In this study, we genetically disrupted the mouse Ace2 gene by direct injection of in vitro transcribed mRNA coding for transcription activator-like effector nucleases (TALENs) into the cytoplasm of outbred Kunming mouse zygotes. Consequently, somatic mutations were induced with an efficiency of 57%, of which 39% were frameshift mutations. Moreover, all modifications were stably transferred during germline transmission. In Ace2-knockout male mice (Ace2(-/y)), we observed severe chemical induced colitis, characterized by considerable weight loss, diarrhea and a shortened colon length. Histologically, Ace2 mutations resulted in the infiltration of leukocytes and the overt damage of the intestinal mucosal barrier. In addition, we detected an increased expression of inflammatory cytokines in the colon tissue of Ace2(-/y) mice. Collectively, the data indicate that high targeting efficiency and heritability can be achieved in an outbred mouse model by zygote injection of TALEN mRNA. Furthermore, the generated Ace2(-/y) mice display phenotypic traits reminiscent of colitis and we anticipate that such mice can be of value in studies of the intestinal microbiome or fecal transplantation.


Asunto(s)
Colitis/fisiopatología , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Enzima Convertidora de Angiotensina 2 , Animales , Secuencia de Bases , Colitis/inducido químicamente , Colitis/genética , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Endonucleasas/genética , Femenino , Mutación de Línea Germinal , Masculino , Microinyecciones , Datos de Secuencia Molecular , ARN Mensajero , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA