Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Waste Manag ; 174: 328-339, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091657

RESUMEN

Co-gasification is crucial for large-scale clean conversion of coal and sludge. In this study, the effects of municipal sewage sludge (MSS, Fe2O3:48.11 %) and pharmaceutical sewage sludge (PSS, Fe2O3: 67.80 %) on ash fusion temperature (AFT) of high AFT Xiangyuan coal (XY) were explored using an AFT analysis, X-ray fluorescence spectrometry, X-ray diffraction, scanning electronic microscopy, and thermodynamics FactSage calculation. The results showed that when MSS or PSS ash mass ratios reached 20 % or 16 % (for XY mixtures, the mass ratio of MSS or PSS should be >5.81 wt% or 5.07 wt%), respectively, the AFT met the requirement of liquid-slag discharge for entrained-flow bed gasification. Under a reducing atmosphere (6:4, CO/CO2, volume ratio), Fe2+ destroyed the bridging-oxygen bonds in the network structure and generated low melting-point (MP) hercynite (FeAl2O4). This resulted in the AFT decreases in the XY mixtures with the additions of PSS or MSS. Meanwhile, the high calcium content (CaO: 13.40 %) easily reacted with Al2O3 and SiO2 and formed anorthite (CaAl2SiO8), which inhibited high-MP mullite formation and decreased the mixed XY AFT. With the increasing SS mass ratio, the surface of the ash sample and thermodynamic FactSage calculation were in good agreement with the experimental results.


Asunto(s)
Carbón Mineral , Hierro , Aguas del Alcantarillado/química , Ceniza del Carbón , Temperatura , Dióxido de Silicio
2.
PeerJ ; 11: e15819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810777

RESUMEN

Background: Maize is sensitive to salt stress, especially during the germination and seedling stages. Methods: We conducted germination experiments on 60 maize materials under salt stress, and screened out the most salt-tolerant and salt-sensitive varieties based on germination indicators. Afterwards, transcriptome analysis was performed to screen for key regulators in the plumule and flag leaf at the germination and seedling stages, respectively. Following that, transgenic tobacco was developed to expose the roles and mechanisms of the candidate genes, enabling a deeper investigation of their functions. Results: Out of the 60 inbred lines of maize, "975-12" exhibits the highest level of salt tolerance, while "GEMS64" displays the lowest. The application of salt stress resulted in a significant increase in the levels of antioxidant enzymes in both "975-12" and "GEMS64". ABA signal transduction and jasmonic acid pathways were the pathways that mainly affected by salt stress. In addition, a significant finding has been made indicating that when exposed to high levels of salt stress, the expression of ZmHSP90 in '975-12' increased while in 'GEMS64' decreased. Furthermore, in tobacco plants overexpressing ZmHSP90, there was an increase in antioxidant enzyme activity associated with salt tolerance. ZmHSP90 enhanced the expression levels of NtSOS1, NtHKT1, and NtNHX1 as compared to those in the salt treatment, causing the maintenance of Na+ and K+ homeostasis, suggesting that high expression of ZmHSP90 was conducive to regulate Na+ transporters to maintain K+/Na+ balanced in tobacco.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Germinación/genética , Plantones/genética , Tolerancia a la Sal/genética
3.
ACS Omega ; 8(9): 8201-8209, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910948

RESUMEN

A middle/low-temperature coal tar (M/LTCT) was obtained from a low-temperature carbonization plant in Shaanxi, China. The M/LTCT was separated into light components and coal tar pitch through extraction. A series of alkanes, aromatic hydrocarbons, oxygen-containing arenes (OCAs), and nitrogen-containing arenes were fractionated from light components by medium-pressure preparative chromatography with gradient elution using petroleum ether and ethyl acetate. They were analyzed using a gas chromatography-mass spectrometer (GC-MS) and a Fourier transform infrared spectrometer. The OCAs were analyzed by a Fourier transform Orbitrap MS (quadrupole exactive Orbitrap mass spectrometer), and the molecular distribution of the O 1-O 6 species was studied. OCAs are mainly oxygen-containing aromatic compounds, including aromatic phenols, furans, alkoxy aromatic hydrocarbons, aromatic ethers, aromatic aldehydes, aromatic ketones, and aromatic acids. The position of the oxygen atom on the aromatic ring and the condensation form of the aromatic ring are studied.

4.
Plant Sci ; 312: 111046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620444

RESUMEN

Barren stalks and kernel abortion are the major obstacles that hinder maize production. After many years of inbreeding, our group produced a pair of barren stalk/non-barren stalk near-isogenic lines SN98A/SN98B. Under weak light stress, the barren stalk rate is up to 98 % in SN98A but zero in SN98B. Therefore, we consider that SN98A is a weak light-sensitive inbred line whereas SN98B is insensitive. In the present study, the near-isogenic lines SN98A/SN98B were used as test materials to conduct cytological and photosynthetic physiological analyses of the physiological mechanism associated with the differences in maize barren stalk induced by weak light stress. The results showed that weak light stress increased the accumulation of reactive oxygen species (ROS), decreased the function of chloroplasts, destroyed the normal rosette structure, inhibited photosynthetic electron transport, and enhanced lipid peroxidation. The actual photochemical quantum efficiency for PSI (Y(I)) and PSII (Y(II)), relative electron transfer rate for PSI (ETR(I)) and PSII (ETR(II)), and the P700 activities decreased significantly in the leaves of SN98A and SN98B under weak light stress, where the decreases were greater in SN98A than SN98B. After 10 days of shading treatment, the O2·- production rate, H2O2 contents, the yield of regulated energy dissipation (Y(NPQ)), the donor side restriction for PSI (Y(ND)) and the quantum efficiency of cyclic electron flow photochemistry were always higher in SN98A than SN98B, and the antioxidant enzyme activities were always lower in SN98A than those in SN98B. These results show that SN98B has a stronger ability to remove ROS at its source, and maintain the integrity of the structure and function of the photosynthetic system. This self-protection mechanism is an important physiological reason for its adaptation to weak light.


Asunto(s)
Adaptación Ocular/genética , Adaptación Ocular/efectos de la radiación , Fotosíntesis/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación , Energía Solar , Zea mays/genética , Zea mays/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Variación Genética , Genotipo , Fotosíntesis/genética , Zea mays/crecimiento & desarrollo
5.
Neurotherapeutics ; 18(2): 1188-1197, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33410112

RESUMEN

Adjuvant neuroprotective therapies for acute ischemic stroke (AIS) have demonstrated benefit in animal studies, albeit without human translation. We investigated the safety and efficacy of high-flow normobaric oxygen (NBO) after endovascular recanalization in anterior circulation stroke. This is a prospective randomized controlled study. Eligible patients were randomized to receive high-flow NBO by a Venturi mask (FiO2 50%, flow 15 L/min) or routine low-flow oxygen supplementation by nasal cannula (flow 3 L/min) after vessel recanalization for 6 h. Patient demographics, procedural metrics, complications, functional outcomes, symptomatic intracranial hemorrhage (sICH), and infarct volume were assessed. A total of 91 patients were treated with high-flow NBO. NBO treatment revealed a common odds ratio of 2.2 (95% CI, 1.26 to 3.87) favoring the distribution of global disability scores on the mRS at 90 days. The mortality at 90 days was significantly lower in the NBO group than in the control group, with an absolute difference of 13.86% (rate ratio, 0.35; 95% CI, 0.13-0.93). A significant reduction of infarct volume as determined by MRI was noted in the NBO group. The median infarct volume was 9.4 ml versus 20.5 ml in the control group (beta coefficient, - 20.24; 95% CI, - 35.93 to - 4.55). No significant differences were seen in the rate of sICH, pneumonia, urinary infection, and seizures between the 2 groups. This study suggests that high-flow NBO therapy after endovascular recanalization is safe and effective in improving functional outcomes, decreasing mortality, and reducing infarct volumes in anterior circulation stroke patients within 6 h from stroke onset.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Terapia por Inhalación de Oxígeno/tendencias , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Trombectomía/tendencias , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno/métodos , Estudios Prospectivos , Trombectomía/métodos , Resultado del Tratamiento
6.
Environ Sci Pollut Res Int ; 25(19): 19012-19027, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29721793

RESUMEN

Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.


Asunto(s)
Antioxidantes/metabolismo , Herbicidas/toxicidad , Piridinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfonilurea/toxicidad , Zea mays/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Plantones/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Zea mays/enzimología , Zea mays/metabolismo
7.
Pestic Biochem Physiol ; 145: 108-117, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29482726

RESUMEN

Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings. Nicosulfuron treatment was applied when the fourth leaves were fully developed and the obtained effects were compared to water treatment as control. After nicosulfuron treatment, compared to SN509-R, the death of SN509-S might be associated with increased oxidative stress, since higher O2- and H2O2 accumulations were observed in SN509-S. This in turn might have caused severe damage to lipids and proteins, thus reducing membrane stability. These effects were exacerbated with increasing exposure time. After nicosulfuron treatment, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and guaiacol peroxidase of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, dehydroascorbate content, glutathione (GSH) content, and GSH to glutathione disulphide ratios significantly declined with increasing exposure time in SN509-S. Our results suggest that the rapid degradation of nicosulfuron in SN509-R results in only a small and transient increase in reactive oxygen species (ROS). In contrast, in SN509-S, reduced nicosulfuron degradation leads to increase ROS, while at the same time, the AA-GSH pathway is not activated.


Asunto(s)
Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Herbicidas/farmacología , Estrés Oxidativo/efectos de los fármacos , Piridinas/farmacología , Compuestos de Sulfonilurea/farmacología , Zea mays/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Ácido Deshidroascórbico/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas/metabolismo , Superóxidos/metabolismo , Zea mays/enzimología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA