Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604584

RESUMEN

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.


Asunto(s)
Células Madre Embrionarias Humanas , Proteínas Proto-Oncogénicas c-jun , Animales , Humanos , Ratones , Diferenciación Celular , Cromatina/genética , Genes jun , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-jun/metabolismo
3.
Biochem Pharmacol ; 209: 115453, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792037

RESUMEN

Prostate cancer (PCa) is one of the most common cancers in men. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa. Thus, new therapeutic approaches for PCa resistance to current treatments are urgently needed. Here, we report that cardiac glycoside neriifolin suppresses the malignancy of cancer cells via increasing DNA damage and apoptosis through activation of endoplasmic reticulum stress (ERS) in prostate cancers. We found that cardiac glycoside neriifolin markedly inhibited the cell growth and induced apoptosis in prostate cancer cells. Transcriptome sequence analysis revealed that neriifolin significantly induced DNA damage and double strand breaks (DSBs), validated with attenuation expression of genes in DSBs repair and increasing phosphorylated histone H2AX (γ-H2AX) foci formation, a quantitative marker of DSBs. Moreover, we found that neriifolin also activated ERS, evidenced by upregulation and activation of ERS related proteins, including eukaryotic initiation factor 2α (eIF2α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and C/EBP homologous protein (CHOP) as well as downregulation of CCAATenhancerbinding protein alpha (C/EBP-α), a transcriptional factor that forms heterodimers with CHOP. In addition, neriifolin treatment dramatically inhibited the by tumor growth, which were reversed by CHOP loss or overexpression of C/EBP-α in nude mice. Mechanistically, neriifolin suppressed the tumor growth by increasing DNA damage and apoptosis through CHOP-C/EBP-α signaling axis of ERS in prostate cancers. Taken together, these results suggest that cardiac glycoside neriifolin may be a potential tumor-specific chemotherapeutic agent in prostate cancer treatment.


Asunto(s)
Glicósidos Cardíacos , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Antagonistas de Andrógenos , Ratones Desnudos , eIF-2 Quinasa/genética , Estrés del Retículo Endoplásmico/fisiología , Apoptosis , Daño del ADN , Factor de Transcripción CHOP/metabolismo
4.
Exp Cell Res ; 422(1): 113427, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400183

RESUMEN

Protein kinase C epsilon (PKCε) belongs to a family of serine/threonine kinases that control cell proliferation, differentiation and survival. Aberrant PKCε activation and overexpression is a frequent feature of numerous cancers. However, its role in regulation of lipid metabolism in cancer cells remains elusive. Here we report a novel function of PKCε in regulating of prostate cancer cell proliferation by modulation of PKM2-mediated de novo lipogenesis. We show that PKCε promotes de novo lipogenesis and tumor cell proliferation via upregulation of lipogenic enzymes and lipid contents in prostate cancer cells. Mechanistically, PKCε interacts with NABD (1-388) domain of C-terminal deletion on pyruvate kinase isoform M2 (PKM2) and enhances the Tyr105 phosphorylation of PKM2, leading to its nuclear localization. Moreover, forced expression of mutant Tyr105 (Y105F) or PKM2 inhibition suppressed de novo lipogenesis and cell proliferation induced by overexpression of PKCε in prostate cancer cells. In a murine tumor model, inhibitor of PKM2 antagonizes lipogenic enzymes expression and prostate cancer growth induced by overexpression of PKCε in vivo. These data indicate that PKCε is a critical regulator of de novo lipogenesis, which may represent a potential therapeutic target for the treatment of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteína Quinasa C-epsilon , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Lipogénesis/genética , Fosforilación/fisiología , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119296, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35595103

RESUMEN

Disseminated prostate cancer (PCa) is known to have a strong propensity for bone marrow. These disseminated tumor cells (DTCs) can survive in bone marrow for years without obvious proliferation, while maintaining the ability to develop into metastatic lesions. However, how DTCs kept dormant and recur is still uncertain. Here, we focus on the role of osteoblastic protein kinase D1 (PKD1) in PCa (PC-3 and DU145) dormancy using co-culture experiments. Using flow cytometry, western blotting, and immunofluorescence, we observed that in co-cultures osteoblasts could induce a dormant state in PCa cells, which is manifested by a fewer cell divisions, a decrease Ki-67-positive populations and a lower ERK/p38 ratio. In contrast, silencing of PKD1 gene in osteoblasts impedes co-cultured prostate cancer cell's dormancy ability. Mechanismly, protein kinase D1 (PKD1) in osteoblasts induces PCa dormancy via activating CREB1, which promoting the expression and secretion of growth arrest specific 6 (GAS6). Furthermore, GAS6-induced dormancy signaling significantly increased the expression of core circadian clock molecules in PCa cells, and a negative correlation of circadian clock proteins (BMAL1, CLOCK and DEC2) with recurrence-free survival is observed in metastatic prostate cancer patients. Interestingly, the expression of cell cycle factors (p21, p27, CDK1 and PCNA) which regulated by circadian clock also upregulated in response to GAS6 stimulation. Taken together, we provide evidence that osteoblastic PKD1/CREB1/GAS6 signaling regulates cellular dormancy of PCa cells, and highlights the importance of circadian clock in PCa cells dormancy.


Asunto(s)
Relojes Circadianos , Neoplasias de la Próstata , Canales Catiónicos TRPP/metabolismo , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Quinasas/metabolismo
6.
Front Oncol ; 10: 517637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194581

RESUMEN

BACKGROUND: This study was to explore the infiltration pattern of immune cells in the prostate cancer (PCa) microenvironment and evaluate the possibility of specific infiltrating immune cells as potential prognostic biomarkers in PCa. METHODS: Infiltrating percentage of 22 immune cells were extracted from 27 normalized datasets by CIBERSORT algorithm. Samples with CIBERSORT p-value < 0.05 were subsequently merged and divided into normal or tumor groups. The differences of 22 immune cells between normal and tumor tissues were analyzed along with potential infiltrating correlations among 22 immune cells and Gleason grades. SNV data from TCGA was used to calculate the TMB score. A univariate and multivariate regression were used to evaluate the prognostic effects of immune cells in PCa. RESULTS: Ten immune cells with significant differences were identified, including seven increased and three decreased infiltrating immune cells from 190 normal prostate tissues and 537 PCa tissues. Among them, the percentage of infiltration of resting NK cells increased the most, whereas the percentage of infiltration of resting mast cells decreased the most. In normal tissues, CD8+ T cells had the strongest infiltrating correlation with monocytes, while activated NK cells and naive B cells were the highest in PCa tissues. Moreover, the infiltration of five immune cells was significantly associated with TMB score and mutations of immune gene change the infiltration of immune cells. The Area Under Curve (AUC) of the multivariate regression model for the five- and 10-year survival prediction of PCa reached 0.796 and 0.862. The validation cohort proved that the model was reproducible. CONCLUSIONS: This study demonstrated that different infiltrating immune cells in prostate cancer, especially higher infiltrating M1 macrophages and neutrophils in PCa tissue, are associated with patients' prognosis, suggesting that these two immune cells might be potential targets for PCa diagnosis and prognosis of treatment.

7.
Front Oncol ; 10: 544288, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117682

RESUMEN

Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis, which is highly expressed in many tumor cells, and has emerged as an important player in tumor progression and metastasis. However, the functional roles of PKM2 in tumor metastasis remain elusive. Here we showed that PKM2 promoted prostate cancer metastasis via extracellular-regulated protein kinase (ERK)-cyclooxygenase (COX-2) signaling. Based on public databases, we found that PKM2 expression was upregulated in prostate cancer and positively associated with tumor metastasis. Further analysis showed that PKM2 promoted prostate cancer cell migration/invasion and epithelial-mesenchymal transition (EMT) through upregulation of COX-2. Mechanistically, PKM2 interacted with ERK1/2 and regulated its phosphorylation, leading to phosphorylation of transcription factor c-Jun, downstream of ERK1/2, to activate COX-2 transcription by IP and ChIP assay, while inhibition of COX-2 significantly reversed the promotion effect of PKM2 on tumor metastasis in vivo. Taken together, our results suggest that a novel of PKM2-ERK1/2-c-Jun-COX-2 axis is a potential target in controlling prostate cancer metastasis.

8.
BMC Cancer ; 19(1): 1142, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771535

RESUMEN

BACKGROUND: Chronic stress is well known to promote tumor progression, however, little is known whether chronic stress-mediated regulation of osteoblasts contributes to the migration and invasion of metastatic cancer cells. METHODS: The proliferation, migration and invasion of prostate cancer cells were assessed by CCK-8 and transwell assay. HIF-1α expression of osteoblasts and epithelial-mesenchymal transition (EMT) markers of prostate cancer cells were examined by Western blot. The mRNA level of cytokines associated with bone metastasis in osteoblasts and EMT markers in PC-3 and DU145 cells were performed by qRT-PCR. Functional rescue experiment of cells were performed by using siRNA, plasmid transfection and inhibitor treatment. RESULTS: Isoproterenol (ISO), a pharmacological surrogate of sympathetic nerve activation induced by chronic stress, exhibited no direct effect on migration and invasion of PC-3 and DU145 prostate cancer cells. Whereas, osteoblasts pretreated with ISO promoted EMT, migration and invasion of PC-3 and DU145 cells, which could be inhibited by ß2AR inhibitor. Mechanistically, ISO increased the secretion of CXCL12 via the ß2AR-HIF-1α signaling in osteoblasts. Moreover, overexpression of HIF-1α osteoblasts promoted migration and invasion of PC-3 and DU145 cells, which was inhibited by addition of recombinant knockdown of CXCR4 in PC-3 and DU145 cells, and inhibiting CXCL12-CXCR4 signaling with LY2510924 blunted the effects of osteoblasts in response to ISO on EMT and migration as well as invasion of PC-3 and DU145 cells. CONCLUSIONS: These findings demonstrated that ß2AR-HIF-1α-CXCL12 signaling in osteoblasts facilitates migration and invasion as well as EMT of prostate cancer cells, and may play a potential role in affecting bone metastasis of prostate cancer.


Asunto(s)
Quimiocina CXCL12/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoproterenol/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo
9.
J Exp Clin Cancer Res ; 38(1): 114, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30841931

RESUMEN

BACKGROUND: Mast cells are being increasingly recognized as critical components in the tumor microenvironment. Protein Kinase D (PKD) is essential for the progression of prostate cancer, but its role in prostate cancer microenvironment remains poorly understood. METHODS: The expression of PKD, mast cells and microvessel density were examined by IHC. The clinical significance was determined by statistical analyses. The biological function of PKD and the underlying mechanisms were investigated using in vitro and in vivo models. RESULTS: PKD2/3 contributed to MCs recruitment and tumor angiogenesis in the prostate cancer microenvironment. Clinical data showed that increased activation of PKD at Ser744/748 in prostate cancer was correlated with mast cell infiltration and microvascular density. PKD2/3 silencing of prostate cancer cells markedly decreased MCs migration and tube formation of HUVEC cells. Moreover, PKD2/3 depletion not only reduced SCF, CCL5 and CCL11 expression in prostate cancer cells but also inhibited angiogenic factors in MCs. Conversely, exogenous SCF, CCL5 and CCL11 reversed the effect on MCs migration inhibited by PKD2/3 silencing. Mechanistically, PKD2/3 interacted with Erk1/2 and activated Erk1/2 or NF-κB signaling pathway, leading to AP-1 or NF-κB binding to the promoter of scf, ccl5 and ccl11. Finally, PKD-specific inhibitor significantly reduced tumor volume and tumor growth in mice bearing RM-1 prostate cancer cells, which was attributed to attenuation of mast cell recruitment and tumor angiogenesis. CONCLUSIONS: These results demonstrate a novel PKDs function that contributes to tumor angiogenesis and progression through mast cells recruitment in prostate cancer microenvironment.


Asunto(s)
Proteínas Angiogénicas/genética , Neovascularización Patológica/genética , Neoplasias de la Próstata/genética , Proteína Quinasa C/genética , Proteínas Angiogénicas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL5/genética , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mastocitos/metabolismo , Mastocitos/patología , Ratones , Neovascularización Patológica/patología , Fosforilación , Regiones Promotoras Genéticas , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Unión Proteica/genética , Proteína Quinasa C/antagonistas & inhibidores , Factor de Células Madre/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción ReIA/genética , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Mol Life Sci ; 75(24): 4583-4598, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30209539

RESUMEN

Protein kinase C ε (PKCε) has emerged as an oncogenic protein kinase and plays important roles in cancer cell survival, proliferation, and invasion. It is, however, still unknown whether PKCε affects cell proliferation via glucose metabolism in cancer cells. Here we report a novel function of PKCε that provides growth advantages for cancer cells by enhancing tumor cells glycolysis. We found that either PKCε or Smad2/3 promoted aerobic glycolysis, expression of the glycolytic genes encoding HIF-1α, HKII, PFKP and MCT4, and tumor cell proliferation, while overexpression of PKCε or Smad3 enhanced aerobic glycolysis and cell proliferation in a protein kinase D- or TGF-ß-independent manner in PC-3M and DU145 prostate cancer cells. The effects of PKCε silencing were reversed by ectopic expression of Smad3. PKCε or Smad3 ectopic expression-induced increase in cell growth was antagonized by inhibition of lactate transportation. Furthermore, interaction of endogenous PKCε with Smad2/3 was primarily responsible for phosphorylation of Ser213 in the Samd3 linker region, and resulted in Smad3 binding to the promoter of the glycolytic genes, thereby promoting cell proliferation. Forced expression of mutant Smad3 (S213A) attenuated PKCε-stimulated protein overexpression of the glycolytic genes. Thus, our results demonstrate a novel PKCε function that promotes cell growth in prostate cancer cells by increasing aerobic glycolysis through crosstalk between PKCε and Smad2/3.


Asunto(s)
Glucólisis/genética , Neoplasias de la Próstata/genética , Proteína Quinasa C-epsilon/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Aerobiosis , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Quinasa C/fisiología , Factor de Crecimiento Transformador beta/fisiología
11.
Sci Rep ; 6: 27904, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27282946

RESUMEN

miR-17 family microRNAs (miRNAs) are crucial for embryo development, however, their role in muscle development is still unclear. miR-20a-5p and miR-20b-5p belong to the miR-17 family and are transcribed from the miR-17~92 and miR-106a~363 clusters respectively. In this study, we found that miR-20a-5p and miR-20b-5p promoted myoblast differentiation and repressed myoblast proliferation by directly binding the 3' UTR of E2F transcription factor 1 (E2F1) mRNA. E2F1 is an important transcriptional factor for organism's normal development. Overexpression of E2F1 in myoblasts promoted myoblast proliferation and inhibited myoblast differentiation. Conversely, E2F1 inhibition induced myoblast differentiation and repressed myoblast proliferation. Moreover, E2F1 can bind directly to promoters of the miR-17~92 and miR-106a~363 clusters and activate their transcription, and E2F1 protein expression is correlated with the expression of pri-miR-17~92 and pri-miR-106a~363 during myoblast differentiation. These results suggested an auto-regulatory feedback loop between E2F1 and miR-20a-5p/20b-5p, and indicated that miR-20a-5p, miR-20b-5p and E2F1 are involved in myoblast proliferation and differentiation through the auto-regulation between E2F1 and miR-20a-5p/20b-5p. These findings provide new insight into the mechanism of muscle differentiation, and further shed light on the understanding of muscle development and muscle diseases.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Secuencia de Bases , Puntos de Control del Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pollos , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/genética , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA