Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Future Oncol ; 20(18): 1275-1287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722138

RESUMEN

Aim: This study aimed to systematically evaluate the value of miRNA-143 in the early detection of bladder cancer (BCa). Methods: CNKI, WanFang, PubMed and Wiley Online Library databases were explored according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. A random-effects model was used to obtain pooled sensitivity, specificity and other related indicates. Results: Six studies were included for analysis. The overall pooled sensitivity and specificity were 0.80 (95% CI: 0.74-0.85) and 0.85 (95% CI: 0.78-0.91), and the area under the curve was 0.88 (95% CI: 0.85-0.91). Coupled with miR-100, it showed better diagnostic power (area under the curve: 0.95). Conclusion: miRNA-143 may serve as a promising noninvasive tool for the early detection of BCa.


Bladder cancer (BCa) is a common and deadly malignant tumor worldwide; however, noninvasive diagnosis can significantly improve the prognosis of patients. Recently, miRNAs have emerged as potential diagnostic biomarkers for BCa. Among them, miRNA-143 has shown promising results in several studies. This meta-analysis aimed to evaluate the overall diagnostic accuracy of miRNA-143 for BCa through a systematic review and meta-analysis of six published articles. Excitingly, the results of this meta-analysis suggest that miRNA-143 has potential diagnostic value in BCa. Particularly, miRNA-143 combined with miRNA-100 maintained better competence. Besides, miRNA-143 in plasma exhibited better diagnostic strength than that in urine. The authors believe that their study provides valuable insights into the use of miRNA-143 as a diagnostic biomarker for BCa.


Asunto(s)
Biomarcadores de Tumor , Detección Precoz del Cáncer , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/diagnóstico , MicroARNs/genética , Biomarcadores de Tumor/genética , Detección Precoz del Cáncer/métodos , Curva ROC , Sensibilidad y Especificidad
2.
Biomed Pharmacother ; 176: 116809, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810400

RESUMEN

GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFß) superfamily, its levels increase in response to cell stress and certain diseases in the serum. To exert its effects, GDF15 binds to glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which was firstly identified in 2017 and highly expressed in the brain stem. Many studies have demonstrated that elevated serum GDF15 is associated with anorexia and weight loss. Herein, we focus on the biology of GDF15, specifically how this circulating protein regulates appetite and metabolism in influencing energy homeostasis through its actions on hindbrain neurons to shed light on its impact on diseases such as obesity and anorexia/cachexia syndromes. It works as an endocrine factor and transmits metabolic signals leading to weight reduction effects by directly reducing appetite and indirectly affecting food intake through complex mechanisms, which could be a promising target for the treatment of energy-intake disorders.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Enfermedades Metabólicas , Humanos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/sangre , Animales , Enfermedades Metabólicas/metabolismo , Metabolismo Energético/fisiología , Obesidad/metabolismo , Anorexia/metabolismo , Apetito/fisiología
3.
Expert Rev Anticancer Ther ; 24(6): 447-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606888

RESUMEN

INTRODUCTION: Bladder cancer (BCa) exhibits a relatively high prevalence, yet convenient tools for its early detection are lacking. Our study aims to assess the diagnostic value of Urothelial Carcinoma-Associated 1 (UCA1) in the early detection of BCa. METHODS: Systematic searches were performed in electronic databases (PubMed, Web of Science, Science Direct, CNKI, Wanfang, and VIP) until 20 July 2023. QUADAS-2 was used for quality assessment, while Meta-DiSc 1.4 and STATA 14.0 were employed for statistical analysis. RESULTS: A total of 1252 BCa patients and 779 controls, from 12 identified articles, were included. UCA1 showed strong discriminatory ability in BCa detection, with an overall sensitivity of 0.84 specificity of 0.91, and a 0.91 area under the curve (AUC). Strikingly, UCA1 expressed in urine and tissue exhibited higher diagnostic value (0.92 AUC) compared to that in blood (0.86 AUC). Furthermore, urine UCA1 demonstrated remarkable diagnostic performance with 91% sensitivity and 98% specificity. Deeks' funnel plot detected no substantial publication bias. CONCLUSION: UCA1 could serve as a potential biomarker for BCa detection with good diagnostic performance. Besides, compared to UCA1 in blood, urine and tissue UCA1 exhibited higher diagnostic value. Further prospective clinical research is needed to corroborate the conclusion. PROSPERO REGISTRATION: CRD42023463210.


Asunto(s)
Biomarcadores de Tumor , Detección Precoz del Cáncer , ARN Largo no Codificante , Sensibilidad y Especificidad , Neoplasias de la Vejiga Urinaria , Humanos , Detección Precoz del Cáncer/métodos , ARN Largo no Codificante/genética , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/patología
4.
Sci Rep ; 14(1): 3112, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326407

RESUMEN

Corticotropin-releasing hormone-binding protein (CRHBP) is involved in many physiological processes. However, it is still unclear what role CRHBP has in tumor immunity and prognosis prediction. Using databases such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Tumor Protein Database, Timer Database, and Gene Expression Profiling Interactive Analysis (GEPIA), we evaluated the potential role of CRHBP in diverse cancers. Further research looked into the relationships between CRHBP and tumor survival prognosis, immune infiltration, immune checkpoint (ICP) indicators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methylation, tumor microenvironment (TME), and drug responsiveness. The anticancer effect of CRHBP in liver hepatocellular carcinoma (LIHC) was shown by Western blotting, EdU staining, JC-1 staining, transwell test, and wound healing assays. CRHBP expression is significantly low in the majority of tumor types and is associated with survival prognosis, ICP markers, TMB, and microsatellite instability (MSI). The expression of CRHBP was found to be substantially related to the quantity of six immune cell types, as well as the interstitial and immunological scores, showing that CRHBP has a substantial impact in the TME. We also noticed a link between the IC50 of a number of anticancer medicines and the degree of CRHBP expression. CRHBP-related signaling pathways were discovered using functional enrichment. Cox regression analysis showed that CRHBP expression was an independent prognostic factor for LIHC. CRHBP has a tumor suppressor function in LIHC, according to cell and molecular biology trials. CRHBP has a significant impact on tumor immunity, treatment, and prognosis, and has the potential as a cancer treatment target and prognostic indicator.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Inestabilidad de Microsatélites , Pronóstico , Bases de Datos de Proteínas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética
5.
Eur J Nucl Med Mol Imaging ; 51(2): 380-394, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792026

RESUMEN

PURPOSE: The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models. METHODS: The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2. RESULTS: Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models. CONCLUSION: In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.


Asunto(s)
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Radioisótopos de Galio , Inmunohistoquímica , Neoplasias Pancreáticas/metabolismo , Tomografía de Emisión de Positrones/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38061619

RESUMEN

The experiment was conducted to investigate the effects of Bisphenol S (BPS) on growth, physiological and biochemical indices, and the expression of ecdysteroid receptor (ECR) of the red swamp crayfish (Procambarus clarkii). The gene encoding ECR was isolated from red swamp crayfish by homologous cloning and rapid amplification of cDNA ends (RACE). The ECR transcripts were 1757 bp long and encoded proteins of 576 amino acids. The quantitative real-time PCR (qRT-PCR) analysis showed that the ECR gene was expressed in various tissues under normal conditions, and the highest level was observed in the ovary and the lowest level was observed in the muscle (P < 0.05). Then, the experiment was designed with four different BPS concentrations (0, 1, 10, and 100 µg/L), BPS exposure for 14 days, three parallel groups, and a total of 240 red swamp crayfish. At 100 µg/L BPS, the survival rate, weight gain rate, and relative length rate were decreased significantly (P < 0.05). Malonaldehyde (MDA) content reached the highest level at 100 µg/L BPS. When BPS concentration was higher than 10 µg/L, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly lower than those of the control group (P < 0.05). The expression levels of the ECR gene in ovary, intestinal, gill, and hepatopancreas tissues were significantly increased after BPS exposure (P < 0.05). The ECR gene expression in ovaries and Y-organs was significantly higher than other groups in 10 µg/L BPS (P < 0.05). The expressions of the tumor necrosis factor -α (TNF-α) and interleukin-6 (IL-6) genes in the hepatopancreas gradually increased, and the highest expression was observed exposed in 100 µg/L BPS (P < 0.05). This research will provide novel insights into the health risk assessment of BPS in aquatic organisms.


Asunto(s)
Astacoidea , Receptores de Esteroides , Animales , Femenino , Astacoidea/genética , Receptores de Esteroides/genética , Expresión Génica
7.
Biomed Pharmacother ; 170: 116069, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147736

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Its occurrence and progression involve the process from simple hepatic steatosis to metabolic dysfunction associated steatohepatitis (MASH), which could develop into advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Growing evidences support that the pathogenesis and progression of MASLD are closely related to immune system dysfunction. This review aims to summarize the association of MASLD with immune disorders and the prospect of using immunotherapy for MASLD.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Enfermedades Metabólicas , Humanos , Cirrosis Hepática
8.
Int. j. morphol ; 41(5): 1527-1536, oct. 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1521022

RESUMEN

SUMMARY: The 12C6+ heavy ion beam irradiation can cause bystander effects. The inflammatory cytokines, endocrine hormones and apoptotic proteins may be involved in 12C6+ irradiation-induced bystander effects. This study characterized the protective effects and mechanisms of Huangqi decoction (HQD) against 12C6+ radiation induced bystander effects. Wistar rats were randomly divided into control, 12C6+ heavy ion irradiation model, and high-dose/medium-dose/low-dose HQD groups. HE staining assessed the pathological changes of brain and kidney. Peripheral blood chemical indicators as well as inflammatory factors and endocrine hormones were detected. Apoptosis was measured with TUNEL. Proliferating cell nuclear antigen (PCNA) expression was determined with real-time PCR and Western blot.Irradiation induced pathological damage to the brain and kidney tissues. After irradiation, the numbers of white blood cells (WBC) and monocyte, and the expression of interleukin (IL)-2, corticotropin-releasing hormone (CRH) and PCNA decreased. The damage was accompanied by increased expression of IL-1β, IL-6, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) as well as increased neuronal apoptosis. These effects were indicative of radiation-induced bystander effects. Administration of HQD attenuated the pathological damage to brain and kidney tissues, and increased the numbers of WBC, neutrophils, lymphocyte and monocytes, as well as the expression of IL-2, CRH and PCNA. It also decreased the expression of IL-1β, IL-6, CORT and ACTH as well as neuronal apoptosis. HQD exhibits protective effects against 12C6+ radiation-induced bystander effects. The underlying mechanism may involve the promotion of the production of peripheral blood cells, inhibition of inflammatory factors and apoptosis, and regulation of endocrine hormones.


La irradiación con haz de iones pesados 12C6+ puede provocar efectos secundarios. Las citoquinas inflamatorias, las hormonas endocrinas y las proteínas apoptóticas pueden estar involucradas en los efectos secundarios inducidos por la irradiación 12C6+. Este estudio caracterizó los efectos y mecanismos protectores de la decocción de Huangqi (HQD) contra los efectos externos inducidos por la radiación 12C6+. Las ratas Wistar se dividieron aleatoriamente en grupos control, modelo de irradiación de iones pesados 12C6+ y grupos de dosis alta/media/baja de HQD. La tinción con HE evaluó los cambios patológicos del cerebro y el riñón. Se detectaron indicadores químicos de sangre periférica, así como factores inflamatorios y hormonas endocrinas. La apoptosis se midió con TUNEL. La expresión del antígeno nuclear de células en proliferación (PCNA) se determinó mediante PCR en tiempo real y transferencia Western blot. La irradiación indujo daños patológicos en los tejidos cerebrales y renales. Después de la irradiación, disminuyó el número de glóbulos blancos (WBC) y monocitos, y la expresión de interleucina (IL)-2, hormona liberadora de corticotropina (CRH) y PCNA. El daño estuvo acompañado por una mayor expresión de IL-1β, IL-6, corticosterona (CORT) y hormona adrenocorticotrópica (ACTH), así como un aumento de la apoptosis neuronal. Estas alteraciones fueron indicativas de efectos inducidos por la radiación. La administración de HQD atenuó el daño patológico a los tejidos cerebrales y renales, y aumentó el número de leucocitos y monocitos, así como la expresión de IL-2, CRH y PCNA. También disminuyó la expresión de IL-1β, IL-6, CORT y ACTH, así como la apoptosis neuronal. HQD exhibe mecanismos protectores contra los efectos externos inducidos por la radiación 12C6+. El mecanismo subyacente puede implicar la promoción de la producción de células sanguíneas periféricas, la inhibición de factores inflamatorios y la apoptosis y la regulación de hormonas endocrinas.


Asunto(s)
Animales , Femenino , Ratas , Medicamentos Herbarios Chinos , Sustancias Protectoras/administración & dosificación , Iones Pesados/efectos adversos , Scutellaria baicalensis/química , Encéfalo/efectos de los fármacos , Encéfalo/efectos de la radiación , Hormona Liberadora de Corticotropina , Ensayo de Inmunoadsorción Enzimática , Ratas Wistar , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Hormona Adrenocorticotrópica , Antígeno Nuclear de Célula en Proliferación , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/efectos de la radiación , Factores Inmunológicos/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/efectos de la radiación
9.
Br J Cancer ; 129(3): 541-550, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311977

RESUMEN

BACKGROUND: PD-L1 promotes glycolysis in tumour cells. We observed a correlation between high PD-L1 expression and high 18F-FDG uptake in patients with pancreatic ductal adenocarcinoma (PDAC) in a previous study. This study aims to determine the usefulness of 18F-FDG PET/CT for evaluating the PD-L1 status in PDAC and to elucidate its rationality by integrated analyses. METHODS: For bioinformatics analysis, WGCNA, GSEA and TIMER were applied to analyse the pathways and hub genes associated with PD-L1 and glucose uptake. 18F-FDG uptake assay was used to determine the glucose uptake rate of PDAC cells in vitro. Related genes expression were verified by RT-PCR and western blot. A retrospective analysis was performed on 47 patients with PDAC who had undergone 18F-FDG PET/CT. Maximum standardised uptake values (SUVmax) were determined. The usefulness of SUVmax for evaluating PD-L1 status was determined by receiver operating characteristic (ROC) curve analysis. RESULTS: Bioinformatics analysis showed that several signalling pathways are associated with both PD-L1 expression and tumour glucose uptake, among which JAK-STAT may be an important one. By in vitro experiments, the regulatory role of PD-L1 on glucose uptake was demonstrated, and its dependency on the JAK-STAT pathway was also verified by the rescue study. The SUVmax of PD-L1-positive patients was significantly higher than PD-L1-negative in tumour cells (TCs) (6.1 ± 2.3 vs. 11.1 ± 4.2; P < 0.001), and in tumour-infiltrating immune cells (TIICs) (6.4 ± 3.2 vs. 8.4 ± 3.5; P < 0.001). In a multivariate analysis, SUVmax was significantly associated with PD-L1 expression in TCs and TIICs (P < 0.001 and P = 0.018, respectively). Using SUVmax cut-off values of 8.15 and 7.75, PD-L1 status in TCs and TIICs could be predicted with accuracies of 91.5% and 74.5%, respectively. CONCLUSION: Higher 18F-FDG uptake by PDAC is associated with elevated PD-L1 expression. JAK-STAT is an important pathway that mediates PD-L1 to promote glucose uptake in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Antígeno B7-H1/metabolismo , Estudios Retrospectivos , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/genética , Glucosa , Neoplasias Pancreáticas
10.
Eur J Nucl Med Mol Imaging ; 50(9): 2683-2691, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37039900

RESUMEN

PURPOSE: Multiple myeloma (MM) is a malignant disease characterized by the secretion of monoclonal immunoglobulins and has a high demand for amino acids. [11C]methionine total-body PET is capable of noninvasive dynamic monitoring of radiotracer in vivo, thus providing a way to reveal the dynamic changes of myeloma metabolism. This study aims to analyze the metabolic process of [11C]methionine based on kinetic modeling, and to preliminary reveal its application value in MM. METHODS: Dynamic total-body [11C]methionine PET/CT was conducted with uEXPLORER in 12 subjects (9 MM patients and 3 controls). The tissue time activity curves (TACs) of organs and bone marrows were extracted. Model fitting of TACs was operated using PMOD Kinetic Modeling. After validation by Goodness of fit (GOF), the reversible two-tissue compartment model (2T4k) was used to further analysis. R software was used to analyze the correlation between kinetic parameters and clinical indicators. RESULTS: The 2T4k has passed the criterion of GOF and was used to fit the data of 0-20 minutes. The [11C]methionine net uptake rate (Ki) was significantly higher in the MM lesions than in the non-myeloma controls (control: 0.040±0.007 mL/g/min, MM: 0.171±0.108 mL/g/min, p=0.009). The Ki values were found to be correlated with M protein levels in MM patients. MM patients with t(4;14) translocations had an elevated k4 value compared with t(4;14) negative patients. CONCLUSION: MM lesions have a propensity for uptake of [11C]methionine. The serum levels of M protein are correlated with [11C]methionine uptake rate in myeloma. Metabolic classification based on the k4 value may be a promising strategy for risk stratification in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Metionina , Tomografía de Emisión de Positrones , Médula Ósea/patología , Racemetionina
11.
Cell Death Discov ; 9(1): 103, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966168

RESUMEN

The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.

12.
Biomaterials ; 288: 121741, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36031458

RESUMEN

Large bone defects that cannot form a callus tissue are often faced with long-time recovery. Developmental engineering-based strategies with mesenchymal stem cell (MSC) aggregates have shown enhanced potential for bone regeneration. However, MSC aggregates are different from the physiological callus tissues, which limited the further endogenous osteogenesis. This study aims to achieve engineering of osteo-callus organoids for rapid bone regeneration in cooperation with bone marrow-derived stem cell (BMSC)-loaded hydrogel microspheres (MSs) by digital light-processing (DLP) printing technology and stepwise-induction. The printed MSC-loaded MSs aggregated into osteo-callus organoids after chondrogenic induction and showed much higher chondrogenic efficiency than that of traditional MSC pellets. Moreover, the osteo-callus organoids exhibited stage-specific gene expression pattern that recapitulated endochondral ossification process, as well as a synchronized state of cell proliferation and differentiation, which highly resembled the diverse cell compositions and behaviors of developmentally endochondral ossification. Lastly, the osteo-callus organoids efficiently led to rapid bone regeneration within only 4 weeks in a large bone defect in rabbits which need 2-3 months in previous tissue engineering studies. The findings suggested that in vitro engineering of osteo-callus organoids with developmentally osteogenic properties is a promising strategy for rapid bone defect regeneration and recovery.


Asunto(s)
Células Madre Mesenquimatosas , Organoides , Animales , Regeneración Ósea , Diferenciación Celular , Condrogénesis , Osteogénesis/fisiología , Conejos , Ingeniería de Tejidos
13.
Front Oncol ; 12: 1044902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36644641

RESUMEN

Purpose: The glycolytic enzyme fructose 1,6-bisphosphate aldolase B (ALDOB) is aberrantly expressed and impacts the prognosis in hepatocellular carcinoma (HCC). Hepatic ALDOB loss leads to paradoxical upregulation of glucose metabolism, favoring hepatocellular carcinogenesis. Nevertheless, the relationship between ALDOB expression and 18F-fluorodeoxyglucose (18F-FDG) uptake, and their effects on HCC prognosis remain unclear. We evaluated whether ALDOB expression is associated with 18F-FDG uptake and their impacts on HCC prognosis prediction. Methods: Changes in ALDOB expression levels and the prognostic values in HCC were analyzed using data from The Cancer Genome Atlas (TCGA) database. Ultimately, 34 patients with HCC who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) preoperatively were enrolled in this retrospective study. ALDOB expression was determined using immunohistochemistry (IHC) staining, and the maximum standardized uptake value (SUVmax) of HCC was calculated from the 18F-FDG PET/CT scans. The relationship between ALDOB expression and SUVmax was examined, and their impacts on overall survival were evaluated using Cox proportional hazards models and Kaplan-Meier survival analysis. ALDOB overexpression in HUH7 and 7721 cells was used to analyze its role in tumor metabolism. Results: According to TCGA database, the ALDOB mRNA level was downregulated in HCC compared to normal tissue, and significantly shortened overall survival in HCC patients. ALDOB protein expression was similarly decreased in IHC findings in HCC than that in adjacent normal tissues (P<0.05) and was significantly associated with tumor size (P<0.001), high tumor-node-metastasis stage (P=0.022), and elevated SUVmax (P=0.009). ALDOB expression in HCC was inversely correlated with SUVmax (r=-0.454; P=0.012), and the optimal SUVmax cutoff value for predicting its expression was 4.15. Prognostically, low ALDOB expression or SUVmax ≥3.9 indicated shorter overall survival time in HCC. Moreover, COX regression analysis suggested high SUVmax as an independent prognostic risk factor for HCC (P=0.036). HCC patients with negative ALDOB expression and positive SUVmax (≥3.9) were correlated with worse prognosis. ALDOB overexpression in HCC cells significantly decreases 18F-FDG uptake and lactate production. Conclusion: SUVmax in HCC patients is inversely correlated with ALDOB expression, and 18F-FDG PET/CT may be useful for ALDOB status prediction. The combined use of ALDOB expression and 18F-FDG PET/CT data can provide additional information on disease prognosis in HCC patients.

14.
Oncogene ; 41(6): 865-877, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862460

RESUMEN

In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-ß1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-ß1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.


Asunto(s)
Piruvato Quinasa
15.
Int J Med Sci ; 18(14): 3150-3157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400885

RESUMEN

Objective: To study the expression and clinical value of PD-L1 gene in pancreatic cancer, and to predict the role of PD-L1 gene in the development of pancreatic cancer. Methods: The pancreatic cancer datasets were downloaded from the Cancer Genome Atlas (TCGA) and the Oncomine to obtain the PD-L1 gene expression profile and clinical information. Bioinformatics methods were used to analyze the correlation between the expression level of PD-L1 gene in pancreatic cancer and clinicopathological indicators, as well as its influence on prognosis. GSEA and WGCNA analysis was performed to predict the possible pathways of PD-L1 gene regulation in pancreatic cancer. TIMER and MCP-counter were used for PD-L1 with immune infiltration. The genes interact with PD-L1 were also investigated by STING and immunoco-precipitation combined with mass spectrometry analysis (IP-MS). Results: In TCGA database, the overall survival of patients with high expression of PD-L1 gene was significantly lower than that of patients with low expression of PD-L1 gene (χ2 = 12.52, P < 0.001). The samples with high expression of PD-L1 gene showed enrichment of 8 pathways including toll-like receptor signaling pathway and NOD receptor signaling pathway (P < 0.01, FDR < 0.05). Immune infiltration analysis suggested that PD-L1 were associated with monocytic lineage (r = 0.5). The proteins interacting with PD-L1 are mainly concentrated in RNA binding, ribosome, spliceosome and other biological processes or pathways. Conclusion: PD-L1 gene may play an important role in the development of pancreatic cancer and is expected to be a prognostic indicator of pancreatic cancer.


Asunto(s)
Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Pancreáticas/genética , Anciano , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/metabolismo , Conjuntos de Datos como Asunto , Femenino , Humanos , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Pronóstico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/inmunología , RNA-Seq
16.
Eur J Pharmacol ; 906: 174280, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174265

RESUMEN

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer and a leading cause of cancer-related deaths worldwide. Cinobufotalin (CBF) is extracted from the skin secretion of the giant toad and clinically used for the treatment of liver cancer, but its molecular mechanism of anti-cancer in HCC has not yet been elucidated. Here, we showed CBF effectively promoted cell apoptosis, induced cell cycle G2-M arrest, inhibited cell proliferation and lipogenesis. Consistently, the lipogenesis ability of xenograft examined by 11C-acetate micro-PET/CT imaging, and the tumor growth rate was notably declined in a centration-dependent manner. The fatty acid profiles showed saturated and mono-unsaturated fatty acid significantly decreased after CBF treatment. Mechanistically, CBF selectively inhibited the expression of SREBP1 and interacted with SREBP1 to prevent it from sterol regulatory elements (SREs), thus inhibiting the expression of lipogenic enzymes. Collectively, our study demonstrates that CBF is a potent native compound that remarkably inhibits HCC lipogenesis and tumorigenesis. CBF may possess this therapeutic potential though interfering with de novo lipid synthesis via SREBP1.


Asunto(s)
Bufanólidos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Lipogénesis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Bufanólidos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lipogénesis/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Death Dis ; 11(12): 1036, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279948

RESUMEN

Pyruvate kinase M2 (PKM2) is not only a key rate-limiting enzyme that guides glycolysis, but also acts as a non-metabolic protein in regulating gene transcription. In recent years, a series of studies have confirmed that post-translational modification has become an important mechanism for regulating the function of PKM2, which in turn affects tumorigenesis. In this study, we found that K62 residues were deacetylated, which is related to the prognosis of HCC. Further studies indicate that HDAC8 binds and deacetylates the K62 residue of PKM2. Mechanistically, K62 deacetylation facilitate PKM2 transport into the nucleus and bind ß-catenin, thereby promoting CCND1 gene transcription and cell cycle progression. In addition, the deacetylation of K62 affects the enzyme activity of PKM2 and the flux of glucose metabolism. Therefore, these results suggest that HDAC8 / PKM2 signaling may become a new target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Glucólisis , Histona Desacetilasas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Hormonas Tiroideas/metabolismo , Acetilación , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Fase G1/genética , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Neoplasias Hepáticas/genética , Lisina/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Fase S/genética , Regulación hacia Arriba/genética , beta Catenina/metabolismo , Proteínas de Unión a Hormona Tiroide
18.
Sensors (Basel) ; 20(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727053

RESUMEN

The vertical migration trend of cyanobacterial cells with gas vesicles in water ecosystems can reflect the changes in the natural environment, such as temperature, nutrients, light conditions, etc. The static pressure treatment is one of the most important approaches to study the properties of the cyanobacterial cell and its gas vesicles. In this paper, a polarized light scattering method is used to probe the collapse and regeneration of the cyanobacterial gas vesicles exposed to different static pressures. During the course, both the axenic and wild type strain of cyanobacterial Microcystis were first treated with different static pressures and then recovered on the normal light conditions. Combining the observation of transmission electron microscopy and floating-sinking photos, the results showed that the collapse and regeneration of the cyanobacterial gas vesicles exposed to different static pressures can be characterized by the polarization parameters. The turbidity as a traditional indicator of gas vesicles but subjected to the concentration of the sample was also measured and found to be correlated with the polarization parameters. More analysis indicated that the polarization parameters are more sensitive and characteristic. The polarized light scattering method can be used to probe the cyanobacterial gas vesicles exposed to different static pressures, which has the potential to provide an in situ rapid and damage-free monitoring tool for observing the vertical migration of cyanobacterial cells and forecasting cyanobacterial blooms.


Asunto(s)
Microcystis , Ecosistema , Gases
19.
J Biol Chem ; 293(17): 6623-6634, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29514980

RESUMEN

Dysregulation of lipid metabolism is common in cancer cells, but the underlying mechanisms are poorly understood. Sterol regulatory element-binding proteins (SREBPs) stimulate lipid biosynthesis through transcriptional activation of lipogenic enzymes. However, SREBPs' roles and potential interacting partners in cancer cells are not fully defined. Using a biochemical approach, we found here that pyruvate kinase M2 (PKM2) physically interacts with the nuclear form of SREBP-1a (nBP1a), by binding to amino acids 43-56 in nBP1a. We also found that PKM2 activates SREBP target gene expression and lipid biosynthesis by stabilizing nBP1a proteins. Using a competitive peptide inhibitor to block the formation of the SREBP-1a/PKM2 complex, we observed that this blockade inhibited lipogenic gene expression. Of note, nBP1a phosphorylation at Thr-59 enhanced the binding to PKM2 and promoted cancer cell growth. Moreover, we show that PKM2 phosphorylates Thr-59 in vitro Lastly, in human patients with hepatocellular carcinoma, nBP1a phosphorylation at Thr-59 was negatively correlated with clinical outcomes. Together, our results reveal that nBP1a/PKM2 interaction activates lipid metabolism genes in cancer cells and that Thr-59 phosphorylation of SREBP-1a plays an important role in cancer cell proliferation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/metabolismo , Proliferación Celular , Lipogénesis , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hormonas Tiroideas/metabolismo , Células A549 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proteínas Portadoras/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Células MCF-7 , Proteínas de la Membrana/genética , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
20.
Oncogene ; 37(13): 1685-1698, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29335521

RESUMEN

There is growing interest in studying the molecular mechanisms of crosstalk between cancer metabolism and the cell cycle. 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a well-known glycolytic activator that plays an important role in tumorigenesis. We investigated whether PFKFB3 was directly involved in oncogenic signaling networks. Mass Spectrometry showed that PFKFB3 interacts with cyclin-dependent kinase (CDK) 4, which controls the transition from G1 phase to S phase of the cell cycle. Further analysis indicated that lysine 147 was a key site for the binding of PFKBFB3 to CDK4. PFKFB3 binding resulted in the accumulation of CDK4 protein by inhibiting ubiquitin proteasome degradation mediated by the heat shock protein 90-Cdc37-CDK4 complex. The proteasome-dependent degradation of CDK4 was accelerated by disrupting the interaction of PFKFB3 with CDK4 by mutating lysine (147) to alanine. Blocking PFKFB3-CDK4 interaction improved the therapeutic effect of FDA-approved CDK4 inhibitor palbociclib on breast cancer. These findings suggest that PFKFB3 is a hub for coordinating cell cycle and glucose metabolism. Combined targeting of PFKFB3 and CDK4 may be new strategy for breast cancer treatment.


Asunto(s)
Ciclo Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Fosfofructoquinasa-2/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/química , Quinasa 4 Dependiente de la Ciclina/genética , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones SCID , Persona de Mediana Edad , Fosfofructoquinasa-2/metabolismo , Piperazinas/uso terapéutico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Proteolisis/efectos de los fármacos , Piridinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA