Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mucosal Immunol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844208

RESUMEN

Mycobacterium tuberculosis- (Mtb) infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that IFNγ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb, and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.

2.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692360

RESUMEN

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Asunto(s)
Inhibidores Enzimáticos , Compuestos Orgánicos de Estaño , Testículo , Animales , Humanos , Relación Estructura-Actividad , Compuestos Orgánicos de Estaño/farmacología , Compuestos Orgánicos de Estaño/química , Ratas , Masculino , Testículo/enzimología , Testículo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Porcinos , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Simulación del Acoplamiento Molecular , Progesterona/farmacología , Progesterona/metabolismo , Microsomas/enzimología , Microsomas/efectos de los fármacos , Ratas Sprague-Dawley
3.
Hypertension ; 81(3): 530-540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38193292

RESUMEN

BACKGROUND: CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS: We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS: We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS: Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.


Asunto(s)
Linfocitos T CD8-positivos , Hipertensión , Ratones , Animales , Receptores Purinérgicos P2X7/genética , Ratones Noqueados , Cloruro de Sodio Dietético , Sodio , Adenosina Trifosfato , Ratones Endogámicos C57BL
4.
PLoS Pathog ; 20(1): e1011983, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271477

RESUMEN

The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linfocitos T CD4-Positivos , Infecciones por Chlamydia , Chlamydia muridarum , Proteínas de Homeodominio , Animales , Femenino , Ratones , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/fisiología , Interleucina-10/metabolismo , Ratones Endogámicos C57BL , Células TH1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Homeodominio/metabolismo
5.
Food Chem Toxicol ; 183: 114257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040240

RESUMEN

The use of alternative substances to replace bisphenol A (BPA) has been encouraged. The objective of this study was to evaluate the effects of BPA and 9 BPA alternatives on human and rat aromatase (CYP19A1) in human and rat placental microsomes. The results revealed that bisphenol A, AP, B, C, E, F, FL, S, and Z, and 4,4'-thiodiphenol (TDP) inhibited human CYP19A1 and bisphenol A, AP, B, C, FL, Z, and TDP inhibited rat CYP19A1. The IC50 values of human CYP19A1 ranged from 3.3 to 172.63 µM and those of rat CYP19A1 ranged from 2.20 to over 100 µM. BPA alternatives were mixed/competitive inhibitors and inhibited estradiol production in BeWo placental cells. Molecular docking analysis showed that BPA alternatives bind to the domain between heme and steroid and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were one hydrogen bond donor, one hydrophobic region, and one ring aromatic hydrophobic region. Bivariate correlation analysis showed that molecular weight, alkyl atom weight, and LogP of BPA alternatives were inversely correlated with their IC50 values. In conclusion, BPA alternatives can inhibit human and rat CYP19A1 and the lipophilicity and the substituted alkyl size determines their inhibitory strength.


Asunto(s)
Aromatasa , Placenta , Humanos , Embarazo , Femenino , Animales , Ratas , Aromatasa/metabolismo , Placenta/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Relación Estructura-Actividad Cuantitativa , Citocromo P-450 CYP1A1/metabolismo , Compuestos de Bencidrilo/farmacología , Proteínas de Unión al ADN
6.
Stem Cell Rev Rep ; 20(3): 769-778, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153635

RESUMEN

Proper proteostasis is indispensable for the long-term maintenance of hematopoietic stem and progenitor cells (HSPCs). The TRiC/CCT (chaperonin-containing TCP-1) complex, a key constituent of cellular machinery facilitating accurate protein folding, has remained enigmatic in its specific function within HSPCs. Here we show that conditional knockout (KO) of Cct5 significantly impairs the maintenance of murine HSPCs. Primary and secondary transplantation experiments unequivocally demonstrate the incapacity of Cct5 KO HSPCs to reconstitute both myeloid and lymphoid lineage cells in recipient mice, highlighting the pivotal role of the TRiC/CCT complex in governing these cellular lineages. Furthermore, leveraging an integrated approach that merges a Protein-Protein Interaction (PPI) database with RNA sequencing (RNA-seq) data of HSPCs, our analysis reveals intricate interactions between Cct5 and vital transcription factors crucial for HSC homeostasis. Notably, Cct5 engages with MYC, PIAS1, TP53, ESR1, HOXA1, and JUN, intricately regulating the transcriptional landscape governing autophagy, myeloid differentiation, and cytoskeleton organization within HSPCs. Our study unveils the profound significance of TRiC/CCT complex-mediated proteostasis in orchestrating the maintenance and functionality of HSPCs.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Linaje de la Célula , Autofagia
7.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961221

RESUMEN

The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.

8.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36928142

RESUMEN

Environmental toxicants, such as cadmium, found in foods, water, and consumer products are known to induce male reproductive dysfunction. However, the underlying molecular mechanism(s) by which cadmium-induced Sertoli cell injury as manifested by a disruption of the blood-testis barrier (BTB) remains unknown. Interestingly, one of the primary targets of cadmium toxicity in the testis is the cytoskeletons of the Sertoli cells, which, in turn, impedes cell junctions in the seminiferous epithelium. In order to expand these earlier observations and to provide a roadmap for future studies, we embarked a study using RNA sequencing to identify the pertinent genes involved in cadmium-induced Sertoli cell injury. Using bioinformatics analyses, multiple gene sets that regulated actin and microtubule (MT) cytoskeletons were identified along with components of the mitogen-activated protein kinase (MAPK) signaling protein and several signaling pathways. More important, we have also discovered that while the gene expression of p38-MAPK (also JNK or c-Jun) was considerably up- or downregulated during cadmium-induced Sertoli cell injury, the activated (phosphorylated) form was upregulated. Importantly, doramapimod (also known as BIRB 796), a specific p38-MARK inhibitor, that was shown to selectively block cadmium-induced p-p38 MAPK activation via phosphorylation in Sertoli cells, was indeed capable of blocking cadmium-induced Sertoli cell injury including disruption of the Sertoli cell-permeability barrier function, disruptive distribution of BTB-associated proteins, and disruptive organization of the actin and MT cytoskeletons. These data provide a helpful source of information for investigators to probe the role of signaling proteins and/or their signaling cascades, besides MAPKs, that likely utilized by cadmium to induce reproductive dysfunction.


Asunto(s)
Cadmio , Células de Sertoli , Masculino , Humanos , Células de Sertoli/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos , Actinas/metabolismo , Testículo/metabolismo , Barrera Hematotesticular/metabolismo , Análisis de Secuencia de ARN , Espermatogénesis
9.
J Ethnopharmacol ; 305: 116051, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36572324

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY: 3ß-Hydroxysteroid dehydrogenase (3ß-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3ß-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS: In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3ß-HSD1 activity and compared the species-dependent difference in human 3ß-HSD1 and rat placental homolog 3ß-HSD4. RESULTS: The inhibitory potency of curcuminoids on human 3ß-HSD1 was demethoxycurcumin (IC50, 0.18 µM) > bisdemethoxycurcumin (0.21 µM)>curcumin (2.41 µM)> dihydrocurcumin (4.13 µM)>tetrahydrocurcumin (15.78 µM)>octahydrocurcumin (ineffective at 100 µM). The inhibitory potency of curcuminoids on rat 3ß-HSD4 was bisdemethoxycurcumin (3.34 µM)>dihydrocurcumin (5.12 µM)>tetrahydrocurcumin (41.82 µM)>demethoxycurcumin (88.10 µM)>curcumin (137.06 µM)> octahydrocurcumin (ineffective at 100 µM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3ß-HSD. CONCLUSION: Some curcuminoids are potent human placental 3ß-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.


Asunto(s)
Curcumina , Animales , Femenino , Humanos , Embarazo , Ratas , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Curcuma/química , Curcumina/química , Diarilheptanoides/farmacología , Hidroxiesteroide Deshidrogenasas/metabolismo , Placenta/metabolismo , Relación Estructura-Actividad
10.
Front Immunol ; 13: 1037504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532015

RESUMEN

Background: Endometriosis is recognized as an estrogen-dependent inflammation disorder, estimated to affect 8%-15% of women of childbearing age. Currently, the etiology and pathogenesis of endometriosis are not completely clear. Underlying mechanism for endometriosis is still under debate and needs further exploration. The involvement of transcription factors and immune mediations may be involved in the pathophysiological process of endometriosis, but the specific mechanism remains to be explored. This study aims to investigate the underlying molecular mechanisms in endometriosis. Methods: The gene expression profile of endometriosis was obtained from the gene expression omnibus (GEO) database. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied to the endometriosis GSE7305 datasets. Cibersort and MCP-counter were used to explore the immune response gene sets, immune response pathway, and immune environment. Differentially expressed genes (DEGs) were identified and screened. Common biological pathways were being investigated using the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Transcription factors were from The Human Transcription Factors. The least absolute shrinkage and selection operator (Lasso) model identified four differential expressions of transcription factors (AEBP1, HOXB6, KLF2, and RORB). Their diagnostic value was calculated by receiver operating characteristic (ROC) curve analysis and validated in the validation cohort (GSE11691, GSE23339). By constructing the interaction network of crucial transcription factors, weighted gene coexpression network analysis (WGCNA) was used to search for key module genes. Metascape was used for enrichment analysis of essential module genes and obtained HOXB6, KLF2. The HOXB6 and KLF2 were further verified as the only two intersection genes according to Support Vector Machine Recursive Feature Elimination (SVM-RFE) and random forest models. We constructed ceRNA (lncRNA-miRNA-mRNA) networks with four potential transcription factors. Finally, we performed molecular docking for goserelin and dienogest with four transcription factors (AEBP1, HOXB6, KLF2, and RORB) to screen potential drug targets. Results: Immune and metabolic pathways were enriched in GSVA and GSEA. In single sample gene set enrichment analysis (ssGSEA), most immune infiltrating cells, immune response gene sets, and immune response pathways are differentially expressed between endometriosis and non-endometriosis. Twenty-seven transcription factors were screened from differentially expressed genes. Most of the twenty-seven transcription factors were correlated with immune infiltrating cells, immune response gene sets and immune response pathways. Furthermore, Adipocyte enhancer binding protein 1 (AEBP1), Homeobox B6 (HOXB6), Kruppel Like Factor 2 (KLF2) and RAR Related Orphan Receptor B (RORB) were selected out from twenty-seven transcription factors. ROC analysis showed that the four genes had a high diagnostic value for endometriosis. In addition, KLF2 and HOXB6 were found to play particularly important roles in multiple modules (String, WGCNA, SVM-RFE, random forest) on the gene interaction network. Using the ceRNA network, we found that NEAT1 may regulate the expressions of AEBP1, HOXB6 and RORB, while X Inactive Specific Transcript (XIST) may control the expressions of HOXB6, RORB and KLF2. Finally, we found that goserelin and dienogest may be potential drugs to regulate AEBP1, HOXB6, KLF2 and RORB through molecular docking. Conclusions: AEBP1, HOXB6, KLF2, and RORB may be potential biomarkers for endometriosis. Two of them, KLF2 and HOXB6, are critical molecules in the gene interaction network of endometriosis. Discovered by molecular docking, AEBP1, HOXB6, KLF2, and RORB are targets for goserelin and dienogest.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Humanos , Femenino , Factores de Transcripción/genética , Goserelina , Simulación del Acoplamiento Molecular , Perfilación de la Expresión Génica , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Carboxipeptidasas , Proteínas Represoras
11.
Reprod Biol Endocrinol ; 20(1): 154, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329464

RESUMEN

The importance of actin and microtubule (MT) cytoskeletons in testis function in rodents is known to some extent, but its role in the etiology of azoospermia in humans remains unexplored. Here, we examined if MT cytoskeleton was defective in NOA (non-obstructive azoospermia) testes versus normal human testes based on histopathological, immunofluorescence (IF), and scRNA-Seq transcriptome profiling. Testis biopsy samples from n = 6 normal men versus n = 3 Sertoli cell only (SCO) and n = 3 MA (meiotic arrest) of NOA patients were used for histopathological analysis. IF analysis was also used to examine MT organization across the seminiferous epithelium, investigating the likely involvement of microtubule-associated proteins (MAPs). scRNA-Seq transcriptome profiling datasets from testes of 3 SCO patients versus 3 normal men in public domain in Gene Expression Omnibus (GEO) Sample (GSM) with identifiers were analyzed to examine relevant genes that regulate MT dynamics. NOA testes of MA and SCO patients displayed notable defects in MT organization across the epithelium with extensive truncation, mis-alignments and appeared as collapsed structures near the base of the tubules. These changes are in contrast to MTs in testes of normal men. scRNA-Seq analyses revealed considerable loss of spermatogenesis capacity in SCO testes of NOA patients versus normal men. An array of genes that support MT dynamics displayed considerable changes in expression and in spatial distribution. In summary, defects in MT cytoskeleton were noted in testes of NOA (SCO) patients, possibly mediated by defective spatial expression and/or distribution of MAPs. These changes, in turn, may impede spermatogenesis in SCO testes of NOA patients.


Asunto(s)
Azoospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/patología , Testículo/metabolismo , Espermatogénesis/genética , Microtúbulos/metabolismo , Microtúbulos/patología , Citoesqueleto/genética , Citoesqueleto/metabolismo
12.
Int Immunopharmacol ; 104: 108513, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35008006

RESUMEN

The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1ß (IL-1ß) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP). We demonstrated that CTRP9 markedly augmented the activation of the NLRP3 inflammasome, as shown by increased mature IL-1ß secretion, triggering ASC speck formation and promoting pyroptosis. Mechanistically, CTRP9 increased the levels of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). Suppressing ROS with N-acetylcysteine (NAC) or interfering with NOX2 by small interfering RNA weakened the promoting effect of CTRP9 on the NLRP3 inflammasome. Furthermore, NLRP3 inflammasome activation, pyroptosis and secretion of mature IL-1ß were significantly decreased in macrophages from CTRP9-KO mice compared to those from WT mice with the same treatment. In vivo, we established a sepsis model by intraperitoneal injection of LPS into WT and CTRP9-KO mice. CTRP9 knockout improved the survival rates of the septic mice and attenuated NLRP3 inflammasome-mediated inflammation. In conclusion, our study indicates that CTRP9 aggravates LPS-induced inflammation by promoting NLRP3 inflammasome activation via the NOX2/ROS pathway. CTRP9 could be a promising target for NLRP3 inflammasome-driven inflammatory diseases.


Asunto(s)
Adiponectina/inmunología , Glicoproteínas/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Adiponectina/genética , Animales , Femenino , Glicoproteínas/genética , Inflamasomas/genética , Inflamación/inducido químicamente , Inflamación/genética , Interleucina-1beta/sangre , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos , Macrófagos Peritoneales/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Especies Reactivas de Oxígeno/inmunología
13.
J Mol Endocrinol ; 67(4): 173-188, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34382943

RESUMEN

Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.


Asunto(s)
Tejido Adiposo/metabolismo , Mama/metabolismo , Epitelio/metabolismo , Interleucina-10/metabolismo , Fenotipo , Premenopausia/metabolismo , Adipocitos/inmunología , Adipocitos/metabolismo , Adiposidad , Adulto , Biomarcadores , Mama/patología , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Citocinas/genética , Citocinas/metabolismo , Femenino , Expresión Génica , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Obesidad/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Telómero/genética , Telómero/metabolismo , Adulto Joven
14.
Open Med (Wars) ; 15: 152-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190739

RESUMEN

BACKGROUND: There is a controversial relationship between the negative lymph nodes (NLNs) and survival in patients with esophageal squamous cell carcinoma (ESCC). This study investigates the implications of total number of NLNs on thoracic ESCC patient prognosis. METHODS: 579 thoracic ESCC patients were categorized into four groups (0-9, 10-14, 15-19 and ≥20 NLNs). Univariate analysis was done by the log-rank tests while multivariate analysis was undertaken using Cox regression models. Survival analysis was determined employing the Kaplan-Meier method. RESULTS: When the numbers of NLNs were 9 or less, 10 to 14, 15 to 19 and 20 or more, patients of 3-year survival rates were 21.7%, 40.0%, 61.2% and 77.5%, respectively (P<0.001). In the node-negative and node-positive subgroups, 3-year survival rates were 34.9% and 14.3%, 50.9% and 19.3%, 65.6% and 51.8%, 81.4% and 68.9% respectively (P<0.001). Gender, tumor length, tumor differentiation, T and N stage as well as the total NLNs were found to be significantly linked to survival rates. Multivariate analysis showed tumor length, T stage, N stage and total NLNs were independent prognostic factors for ESCC patients. CONCLUSION: NLNs numbers is a significant independent prognostic indicator for thoracic ESCC patients' survival after curative esophagectomy.

15.
Eur J Immunol ; 50(5): 676-684, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32026472

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis causes the most prevalent bacterial sexually transmitted infection worldwide. CD4 T cells play a central role in the protective immunity against Chlamydia female reproductive tract (FRT) infection, while B cells are thought to be dispensable for resolution of primary Chlamydia infection in mouse models. We recently reported an unexpected requirement of B cells in local Chlamydia-specific CD4 T-cell priming and bacterial containment within the FRT. Here, we sought to tackle the precise effector function of B cells during Chlamydia primary infection. Using mixed bone marrow chimeras that lack B-cell-dependent Ag presentation (MHCIIB-/- ) or devoid of circulating antibodies (AID-/- × µS-/- ), we show that Chlamydia-specific CD4 T-cell expansion does not rely on Ag presentation by B cells. Importantly, we demonstrate that antibody, but not B-cell-dependent Ag presentation, is required for preventing systemic bacterial dissemination following Chlamydia FRT infection.


Asunto(s)
Anticuerpos Antibacterianos/biosíntesis , Linfocitos B/inmunología , Bacteriemia/inmunología , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Animales , Presentación de Antígeno , Linfocitos B/microbiología , Bacteriemia/microbiología , Bacteriemia/patología , Células de la Médula Ósea/microbiología , Linfocitos T CD4-Positivos/microbiología , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/patogenicidad , Modelos Animales de Enfermedad , Femenino , Inmunidad Humoral , Isotipos de Inmunoglobulinas , Ratones , Quimera por Trasplante , Vagina/inmunología , Vagina/microbiología , Irradiación Corporal Total
16.
FASEB J ; 34(2): 3105-3128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31909540

RESUMEN

During the epithelial cycle of spermatogenesis, different sets of cellular events take place across the seminiferous epithelium in the testis. For instance, remodeling of the blood-testis barrier (BTB) that facilitates the transport of preleptotene spermatocytes across the immunological barrier and the release of sperms at spermiation take place at the opposite ends of the epithelium simultaneously at stage VIII of the epithelial cycle. These cellular events are tightly coordinated via locally produced regulatory biomolecules. Studies have shown that collagen α3 (IV) chains, a major constituent component of the basement membrane, release the non-collagenous (NC) 1 domain, a 28-kDa peptide, designated NC1-peptide, from the C-terminal region, via the action of MMP-9 (matrix metalloproteinase 9). NC1-peptide was found to be capable of inducing BTB remodeling and spermatid release across the epithelium. As such, the NC1-peptide is an endogenously produced biologically active peptide which coordinates these cellular events across the epithelium in stage VIII tubules. Herein, we used an animal model, wherein NC1-peptide cloned into the pCI-neo mammalian expression vector was overexpressed in the testis, to better understanding the molecular mechanism by which NC1-peptide regulated spermatogenic function. It was shown that NC1-peptide induced considerable downregulation on a number of cell polarity and planar cell polarity (PCP) proteins, and studies have shown these polarity and PCP proteins modulate spermatid polarity and adhesion via their effects on microtubule (MT) and F-actin cytoskeletal organization across the epithelium. More important, NC1-peptide exerted its effects by downregulating the expression of microtubule (MT) plus-end tracking protein (+TIP) called EB1 (end-binding protein 1). We cloned the full-length EB1 cDNA for its overexpression in the testis, which was found to block the NC1-peptide-mediated disruptive effects on cytoskeletal organization in Sertoli cell epithelium and pertinent Sertoli cell functions. These findings thus illustrate that NC1-peptide is working in concert with EB1 to support spermatogenesis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Barrera Hematotesticular/metabolismo , Colágeno/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/farmacología , Espermátides/metabolismo , Espermatogénesis/efectos de los fármacos , Animales , Barrera Hematotesticular/citología , Colágeno/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/química , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Espermátides/citología , Uniones Estrechas/metabolismo
17.
Immunol Lett ; 220: 79-87, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901377

RESUMEN

Adoptive cell therapy using ex vivo expanded lymphocytes has shown remarkable efficacy in tumor immunotherapy recently. Among various transfused immune cells, T lymphocytes are the most widely used since they are critical mediators of the immune system and have the capacity to kill tumor cells. However, there are drawbacks in the expanded T cells for transfusion including limited cytotoxicity, limited proliferation and lack of specificity. To improve the quality of these ex vivo expanded T cells, we have designed a new method to expand a group of T cells which are named bispecific antibodies activated T cells. It is the first time that such cells are induced by introducing the bispecific antibody drug (blinatumomab) and feeder cells (normal B cells and irradiated B cell originated lymphoma cells) to the traditional T cells culture system. Culture of freshly isolated human peripheral blood mononuclear cells in this newly designed cell culture system enabled these expanded T cells that (a) displayed a robust proliferation ability; (b) showed fully activated phenotype and enhanced cytokines production; (c) had a low proportion of CD4+CD25+ T regulatory cells and (d) exhibited strengthened cytotoxicity at relatively low effector: target ratios. This work further confirmed the feasibility of rapid induction and expansion of large amounts of human T cells in vitro by using bispecific antibodies and feeder cells. This strategy could also be used for other immune cells rapid expansion and help to improve the quality of these expanded immune cells for adoptive transfusion.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Citotoxicidad Inmunológica/efectos de los fármacos , Inmunoterapia Adoptiva , Activación de Linfocitos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Antígenos CD19/análisis , Antígenos CD19/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Antígenos CD4/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Nutrientes/efectos de los fármacos , Células Nutrientes/inmunología , Humanos , Subunidad alfa del Receptor de Interleucina-2/inmunología , Linfocitos T Reguladores/inmunología
19.
Immunol Invest ; 49(5): 522-534, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31793363

RESUMEN

THE AIM OF THIS STUDY: The purpose of this study is to investigate whether the DC cells combined with CIK cells (DC/CIK) and DC activated cytotoxic T cells (DC-ACT) treatment can promote antitumor response and change the immune indicators by targeting the heterogeneous tumor cell populations at a system level. METHODS: In this study, 112 patients with cancer were assigned to the DC/CIK treatment and 116 patients received the DC-ACT therapy. We detected the lymphocyte subsets and other immune indicators pre- and post-treatment to evaluate the changes of patient's immunity and compare the differences in immune status between two adoptive cellular immunotherapies. RESULTS: DC/CIK therapy elevated the percentage of CD3+ HLA-DR+ T cells, NK cells and several serological cytokines such as IL-2, IL-6 after cell infusion (p < .05). DC-ACT therapy could increase the total CD3 + T cells, CD8 + T cells, CD3+ HLA-DR+ cells and IL-12 cytokines after cell infusion (p < .05). The levels of IL-4/IFN-γ, IL-4/IL-12 and IL-6/IL-12 were reduced significantly in the DC-ACT group compared with DC/CIK group. These observations suggested that DC-ACT therapy has more dominance to induce Th1 cytokine response instead of skewing toward the Th2 cytokine profile based on the immunomodulatory properties. CONCLUSIONS: These results indicated that DC, CIK, and DC-ACT cells exert anti-tumor activity through the different pathways. Thus, this work may provide valuable insights into the clinical curative effect evaluation of immunocyte therapy and the design of combined immunotherapeutic strategies for malignant tumors.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Asesinas Inducidas por Citocinas/inmunología , Células Dendríticas/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Células Th2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Células Asesinas Inducidas por Citocinas/trasplante , Células Dendríticas/trasplante , Femenino , Humanos , Inmunidad , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Neoplasias/inmunología , Linfocitos T Citotóxicos/trasplante , Balance Th1 - Th2 , Adulto Joven
20.
Toxicol Lett ; 314: 53-62, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31319113

RESUMEN

Benzyl butyl phthalate (BBP) is a widely used plasticizer and has raised public health concerns. Here, we report the effects of BBP on the testis development during rat puberty. BBP (0, 10, 100 or 1000 mg/kg) was gavaged to 35-day-old male Sprague Dawley rats for 21 days. The serum testosterone levels, Leydig cell number, the expressions of Leydig and Sertoli cell genes and proteins were measured. The in vitro effects on steroidogenesis and gene expression in immature Leydig cells were observed. BBP significantly increased serum testosterone level at 10 mg/kg but lowered its level at 1000 mg/kg without affecting serum luteinizing hormone and follicle-stimulating hormone levels. BBP increased Leydig cell number at all doses but inhibited steroidogenic capacity per Leydig cell at 1000 mg/kg. BBP significantly increased the ratio of phosphos-AKT2 (pAKT2)/AKT2, and phosphos-ERK1/2 (pERK1/2)/ERK1/2 in the testis. Mono-benzyl phthalate (the metabolite of BBP) inhibited steroidogenesis but BBP did not affect androgen production in immature Leydig cells in vitro. In conclusion, BBP non-linearly regulates Leydig cell development by increasing Leydig cell number but inhibiting steroidogenesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Plastificantes/toxicidad , Desarrollo Sexual/efectos de los fármacos , Testosterona/biosíntesis , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Transducción de Señal/efectos de los fármacos , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA