Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Med ; 30(1): 52, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641575

RESUMEN

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Asunto(s)
Polietilenos , Polipropilenos , Enfermedades de la Piel , Factor de Crecimiento Transformador beta , Animales , Ratones , Bleomicina/efectos adversos , Colágeno/metabolismo , Fibrosis/tratamiento farmacológico , Hidrogeles/química , Hidrogeles/farmacología , Polietilenos/farmacología , Polipropilenos/farmacología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo , Proteínas Smad/efectos de los fármacos , Proteínas Smad/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
2.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38450619

RESUMEN

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Ratones , Animales , Gelatina/farmacología , Gelatina/química , Microesferas , Metaloproteinasa 9 de la Matriz/farmacología , Metaloproteinasa 9 de la Matriz/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Macrófagos
3.
Mol Med ; 29(1): 135, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828444

RESUMEN

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Humanos , Nefropatías Diabéticas/patología , Podocitos/metabolismo , Podocitos/patología , Muerte Celular , Apoptosis , Células Epiteliales/metabolismo , Diabetes Mellitus/metabolismo
4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(4): 426-433, 2023 Aug 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37474475

RESUMEN

OBJECTIVES: This study aimed to investigate the feasibility of measuring the soft tissue height of bone cristae around implant by digital method. METHODS: A total of 36 patients with dental implants were selected from the Dental Medicine Center of the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) from August 2022 to December 2022. A total of 43 dental implants were enrolled. All postoperative cone beam CT (CBCT) imaging data and intraoral digital impressions obtained before surgery were immediately obtained by the patients on the day of completion of oral implant surgery and they were imported into oral implant surgery planning software for image fitting. Then, virtual implants of the same specification were placed in the planting area, and the implant position was adjusted to overlap with the implant shadow in the CBCT image. Supracrestal tissue height (STH) was measured at the implant view interface (digital group). During the operation, implant holes were prepared step by step in accordance with the standard preparation method, and implants were implanted. The upper edge of the implant was flushed with the crest of the alveolar ridge. STH was measured by perio-dontal probing (periodontal probe group). Paired t-test was used to compare the STH differences between the digital and periodontal probe groups. Bland-Altman test was used to analyze the consistency of the two methods. Intra-group correlation coefficient (ICC) was used to verify the reliability of the results measured by different surveyors using di-gital methods. RESULTS: No statistical significance was observed in the STH difference between the two methods (P>0.05). Bland-Altman test showed good consistency between the two methods, but the measurement of mandibular posterior teeth showed that the results of periodontal probe were greater than those of digital method. The ICC and 95%CI of the STH results measured digitally by different surveyors are 0.992 (0.986-0.996). CONCLUSIONS: The digital me-thod is in good agreement with the periodontal probe method in measuring the soft tissue height of the bone cristae around the implant.


Asunto(s)
Proceso Alveolar , Implantes Dentales , Diente , Humanos , Proceso Alveolar/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Diente/diagnóstico por imagen
5.
Front Mol Biosci ; 9: 965064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090039

RESUMEN

Alzheimer's disease (AD) accounts for two-thirds of all dementia cases, affecting 50 million people worldwide. Only four of the more than 100 AD drugs developed thus far have successfully improved AD symptoms. Furthermore, these improvements are only temporary, as no treatment can stop or reverse AD progression. A growing number of recent studies have demonstrated that iron-dependent programmed cell death, known as ferroptosis, contributes to AD-mediated nerve cell death. The ferroptosis pathways within nerve cells include iron homeostasis regulation, cystine/glutamate (Glu) reverse transporter (system xc-), glutathione (GSH)/glutathione peroxidase 4 (GPX4), and lipid peroxidation. In the regulation pathway of AD iron homeostasis, abnormal iron uptake, excretion and storage in nerve cells lead to increased intracellular free iron and Fenton reactions. Furthermore, decreased Glu transporter expression leads to Glu accumulation outside nerve cells, resulting in the inhibition of the system xc- pathway. GSH depletion causes abnormalities in GPX4, leading to excessive accumulation of lipid peroxides. Alterations in these specific pathways and amino acid metabolism eventually lead to ferroptosis. This review explores the connection between AD and the ferroptosis signaling pathways and amino acid metabolism, potentially informing future AD diagnosis and treatment methodologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA