Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(18): 4569-4578, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171584

RESUMEN

Tyrosinase (TYR), as an important biological enzyme, has been widely used in synthetic biology, medical hairdressing, environmental detection, biological sensors, and other fields. In clinical practice, tyrosinase activity is an important indicator for detecting melanoma. Therefore, the detection of tyrosinase activity is of great importance. Based on the polyphenol oxidase activity of tyrosinase, a simple and rapid detection method was proposed based on the adjustable light scattering properties of cobalt hydroxyl oxide nanoflakes (CoOOH NFs). It was found that the amount and size of CoOOH NFs decreased due to the redox reaction mediated by catechol (CC), resulting in a lower light scattering signal of CoOOH NFs. However, in the presence of tyrosinase, catechol was oxidized to a quinone structure, resulting in the reduced decomposition of CoOOH NFs and recovered light scattering signal, which was developed for the quantitative detection of tyrosinase activity. It was found that in the range of 10-400 U/L, the light scattering intensity was correlated linearly with tyrosinase activity, and the limit of detection was 6.71 U/L (3σ/k). To verify the feasibility of the proposed method in clinical samples, the spiked recovery experiments were carried out with human serum samples, which showed recovery rates between 93.0% and 104.6%, suggesting the high accuracy. The proposed assay provides a simple and rapid method for detection of a natural enzyme based on the adjustable light scattering properties of CoOOH nanoflakes, which lays the foundation for the development of various enzyme sensing applications in the future.


Asunto(s)
Monofenol Monooxigenasa , Óxidos , Humanos , Óxidos/química , Cobalto/química
2.
Talanta ; 244: 123403, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35349839

RESUMEN

The facile and noninjurious image of cells with high resolution and low toxicity is essential since imaging can offer rich and direct information and insights into metabolic activities, clinical diagnosis, drug delivery and cancer therapy. In this contribution, a smart imaging probe was employed as a contrast agent for dark-field cell imaging. Au core/Ag shell nanorods (Au@Ag NRs) that characterized by X-ray diffraction and X-ray photoelectron spectroscopy, formed Au@Ag@AgI NRs when exposed to iodine, which greatly enhanced the light scattering of nanorods. Herein, the silver shell acted as the response element for iodine as well as the protective agent for Au core. When conjugated with folate, the nanorods can be used to image human cervical cancer cells (HeLa cells) under a dark-field microscope. Nanorods were demonstrated with excellent tumor cellular uptake ability without obvious cytotoxicity, making them ideal candidates in biosensing and bioimaging applications.


Asunto(s)
Yodo , Nanotubos , Oro/química , Células HeLa , Humanos , Yoduros , Nanotubos/química , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA