Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140588, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39068801

RESUMEN

To improve nutritional health, a low-salt (0.5 %) silver carp (Hypophthalmichthys molitrix) surimi gel with α-tocopherol, soybean oil, and glyceryl monostearate oleogel was fabricated and evaluated for textural qualities, lipid oxidation, and in-vitro digestion analysis. Based on the texture profile analysis, gel strength, water holding capacity (WHC), rheological, protein secondary structure, and microstructural examination, 5 % oleogel addition to low-salt surimi exhibited similar physicochemical properties to regular-salt surimi gels. By crosslinking myosin and filling protein network voids, the oleogel increased surimi gel density. Increasing oleogel content improved the physicochemical qualities of heat-induced surimi, causing protein aggregation during digestion and reducing digestibility. The presence of oleogel altered protein secondary structure, reducing α-helix content and increasing ß-sheet and other structures, enhancing WHC and gel strength of low salt surimi. Adding oleogel improved the antioxidant activity of digestive solutions. This study will help understand myosin-oleogel interaction and the development of sustainable and nutritious surimi-based foods.

2.
J Med Chem ; 66(20): 14150-14174, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37796543

RESUMEN

Multitarget HDAC inhibitors capable of simultaneously blocking the BRD4-LIFR-JAK1-STAT3 signaling pathway hold great potential for the treatment of TNBC and other solid tumors. Herein, novel Fedratinib-based multitarget HDAC inhibitors were rationally designed, synthesized, and biologically evaluated, among which compound 25ap stood out as a potent HDAC/JAK/BRD4 triple inhibitor. Satisfyingly, compound 25ap led to concurrent inhibition of HDACs and the BRD4-LIFR-JAK1-STAT3 signaling pathway, which was validated by hyper-acetylation of histone and α-tubulin, hypo-phosphorylation of STAT3, downregulation of LIFR, MCL-1, and c-Myc in MDA-MB-231 cells. The multitarget effects of 25ap contributed to its robust antitumor response, including potent antiproliferative activity, remarkable apoptosis-inducing activity, and inhibition of colony formation. Notably, 25ap possessed an acceptable therapeutic window between normal and cancerous cells, desirable in vitro metabolic stability in mouse microsome, and sufficient in vivo exposure via intraperitoneal administration. Additionally, the in vivo antitumor potency of 25ap was demonstrated in an MDA-MB-231 xenograft model.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteínas Nucleares , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Factores de Transcripción , Apoptosis , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/metabolismo
3.
Invest New Drugs ; 41(5): 638-651, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37470887

RESUMEN

CDK4/6 inhibitors plus endocrine therapy is a standard therapy for HR+/HER2- breast cancer. Herein, using structure-based drug design strategy, a novel series of palbociclib derivatives were designed and synthesized as CDK4/6 inhibitors, among which compound 17m exhibited more potent CDK4/6 inhibitory activity and in vitro antiproliferative activity against the phosphorylated Rb-positive cell line MDA-MB-453 than the approved drug palbociclib. Moreover, compound 17m possessed remarkable CDK4/6 selectivity over other CDK family members including CDK1, CDK2, CDK3, CDK5, CDK7 and CDK9. The potent and selective CDK4/6 inhibitory activity endowed compound 17m with robust G1 cell cycle arrest ability in MDA-MB-453 cells. The intracellular inhibition of CDK4/6 by 17m was confirmed by western blot analysis of the levels of phosphorylated Rb in MDA-MB-453 cells. With respect to the metabolic stability, compound 17m possessed longer half-life (t1/2) in mouse liver microsome than palbociclib.

4.
Biochemistry ; 62(2): 462-475, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36577516

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural products with remarkable chemical and functional diversities. These peptides are often synthesized as signals or antibiotics and frequently associated with quorum sensing (QS) systems. With the increasing number of available genomes, many hitherto unseen RiPP biosynthetic pathways have been mined, providing new resources for novel bioactive compounds. Herein, we investigated the underexplored biosynthetic potential of Streptococci, prevalent bacteria in mammal-microbiomes that include pathogenic, mutualistic, and commensal members. Using the transcription factor-centric genome mining strategy, we discovered a new family of lanthipeptide biosynthetic loci under the control of potential QS. By in vitro studies, we investigated the reaction of one of these lanthipeptide synthetases and found that it installs only one lanthionine moiety onto its short precursor peptide by connecting a conserved TxxC region. Bioinformatics and in vitro studies revealed that these lanthipeptide synthetases (class VI) are novel lanthipeptide synthetases with a truncated lyase, a kinase, and a truncated cyclase domain. Our data provide important insights into the processing and evolution of lanthipeptide synthetase to tailor smaller substrates. The data are important for obtaining a mechanistic understanding of the post-translational biosynthesis machinery of the growing variety of lanthipeptides.


Asunto(s)
Productos Biológicos , Ligasas , Ligasas/metabolismo , Productos Biológicos/metabolismo , Péptidos/química , Antibacterianos/metabolismo , Ribosomas/metabolismo , Procesamiento Proteico-Postraduccional
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430203

RESUMEN

Coxsackieviruses, a genus of enteroviruses in the small RNA virus family, cause fatal infectious diseases in humans. Thus far, there are no approved drugs to prevent these diseases. Human milk contains various biologically active components against pathogens. Currently, the potential activity of breast milk components against the coxsackievirus remains unclear. In our study, the inhibitory effect of 16 major human milk components was tested on coxsackievirus class A type 9 isolate (CV-A9), BUCT01; 2'-Fucosyllactose (2'-FL) was identified to be effective. Time-of-addition, attachment internalisation assays, and the addition of 2'-FL at different time points were applied to investigate its specific role in the viral life cycle. Molecular docking was used to predict 2'-FL's specific cellular targets. The initial screening revealed a significant inhibitory effect (99.97%) against CV-A9 with 10 mg/mL 2'-FL, with no cytotoxicity observed. Compared with the control group, 2'-FL blocked virus entry (85%) as well as inhibited viral attachment (48.4%) and internalisation (51.3%), minimising its infection in rhabdomyosarcoma (RD) cells. The cell pre-incubation with 2'-FL exhibited significant inhibition (73.2-99.9%). Extended incubation between cells with 2'-FL reduced CV-A9 infection (93.9%), suggesting that 2'-FL predominantly targets cells to block infection. Molecular docking results revealed that 2'-FL interacted with the attachment receptor αvß6 and the internalisation receptor FCGRT and ß2M with an affinity of -2.14, -1.87, and -5.43 kcal/mol, respectively. This study lays the foundation for using 2'-FL as a food additive against CV-A9 infections.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus , Humanos , Acoplamiento Viral , Simulación del Acoplamiento Molecular
6.
Food Chem ; 335: 127647, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739816

RESUMEN

The inhibition mechanism of the texture deterioration of tilapia fillets after treatment with polyphenols during partial freezing for 49 days was studied. Carnosic acid (CA), procyanidin (PA), quercetin (QE), and resveratrol (RSV) treatments had significantly higher hardness values (over 230 g) than the control group (183 g) on day 49 (P < 0.05). Polyphenol treatments were effective in delaying the protein degradation, lipid oxidation and spoilage microbe growth. Moreover, the kinetic model showed that the predicted shelf life of tilapia fillets treated with PA (102 d) was extended by 25 d compared to the control group (77 d). It was the proposed possible mechanism that polyphenols comprehensively maintained the protein conformation (increased hydrogen bonds and decreased disulfide bonds) and retarded protein denaturation and degradation, protecting the texture of the fillets. Therefore, polyphenols can be used to maintain texture and extend the shelf life of tilapia fillets during partial freezing.


Asunto(s)
Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Carne/análisis , Polifenoles/análisis , Polifenoles/farmacología , Animales , Biflavonoides/química , Catequina/química , Proteínas de Peces/química , Conservación de Alimentos/instrumentación , Congelación , Oxidación-Reducción/efectos de los fármacos , Proantocianidinas/química , Desnaturalización Proteica/efectos de los fármacos , Tilapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA