Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Adv Sci (Weinh) ; : e2309940, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874114

RESUMEN

Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.

2.
Biomaterials ; 311: 122645, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38850717

RESUMEN

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Inmunoterapia , Proteínas de la Membrana , Impresión Tridimensional , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Inmunoterapia/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Ratones , Andamios del Tejido/química , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Humanos , Femenino , Ratones Endogámicos BALB C
3.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575923

RESUMEN

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales , Pulpa Dental , Células Madre , Diferenciación Celular , Regeneración , ADN/metabolismo , Proliferación Celular/fisiología
4.
Adv Sci (Weinh) ; 11(17): e2309899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380546

RESUMEN

The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Impresión Tridimensional , Esferoides Celulares , Esferoides Celulares/citología , Humanos , Animales , Células Madre Mesenquimatosas/citología , Ratones , Diferenciación Celular/fisiología , Ingeniería de Tejidos/métodos , Hígado , Hepatocitos/citología , Modelos Animales de Enfermedad , Fallo Hepático/terapia , Técnicas de Cocultivo/métodos
5.
Biomater Sci ; 12(9): 2203-2228, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293828

RESUMEN

Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.


Asunto(s)
Nanopartículas , Oligodesoxirribonucleótidos , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/administración & dosificación , Nanopartículas/química , Animales , Inmunoterapia/métodos , Receptor Toll-Like 9/metabolismo , Sistemas de Liberación de Medicamentos
6.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251733

RESUMEN

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Medicina de Precisión
7.
Nat Mater ; 23(2): 271-280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957270

RESUMEN

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Estilbenos , Animales , Ratones , Fototerapia/métodos , Nanopartículas/química , Oro/química , Mamíferos
8.
Adv Mater ; 36(13): e2300665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37437039

RESUMEN

Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética , Vectores Genéticos , Neoplasias/genética , Neoplasias/terapia
9.
ACS Nano ; 17(24): 25243-25256, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38063365

RESUMEN

Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.


Asunto(s)
Fallo Hepático Agudo , Trasplante de Células Madre Mesenquimatosas , MicroARNs , Microgeles , Ratones , Animales , Humanos , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Microfluídica , Fallo Hepático Agudo/terapia , Fallo Hepático Agudo/inducido químicamente , Hepatocitos/metabolismo , Hígado/metabolismo , Diferenciación Celular
10.
Biomaterials ; 302: 122349, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37844429

RESUMEN

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias Hepáticas/terapia , Nanomedicina , Tirosina
11.
Adv Mater ; : e2305826, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801371

RESUMEN

Acute liver failure (ALF) is a life-threatening disease associated with the rapid development of inflammatory storms, reactive oxygen species (ROS) level elevation, and hepatocyte necrosis, which results in high short-term mortality. Except for liver transplantation, no effective strategies are available for ALF therapy due to the rapid disease progression and narrow therapeutic time window. Therefore, there is an urgent demand to explore fast and effective modalities for ALF treatment. Herein, a multifunctional tetrahedral DNA nanoplatform (TDN) is constructed by incorporating the tumor necrosis factor-α siRNA (siTNF-α) through DNA hybridization and antioxidant manganese porphyrin (MnP4) via π-π stacking interaction with G-quadruplex (G4) for surprisingly rapid and significant ALF therapy. TDN-siTNF-α/-G4-MnP4 silences TNF-α of macrophages by siTNF-α and polarizes them to the anti-inflammatory M2 phenotype, providing appropriate microenvironments for hepatocyte viability. Additionally, TDN-siTNF-α/-G4-MnP4 scavenges intracellular ROS by MnP4 and TDN, protecting hepatocytes from oxidative stress-associated cell death. Furthermore, TDN itself promotes hepatocyte proliferation via modulating the cell cycle. TDN-siTNF-α/-G4-MnP4 shows almost complete liver accumulation after intravenous injection and exhibits excellent therapeutic efficacy of ALF within 2 h. The multifunctional DNA nanoformulation provides an effective strategy for rapid ALF therapy, expanding its application for innovative treatments for liver diseases. This article is protected by copyright. All rights reserved.

12.
Sci Adv ; 9(32): eadh2413, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556535

RESUMEN

Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Inmunoterapia Adoptiva , Línea Celular Tumoral , Fagocitosis , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
13.
J Mater Chem B ; 11(28): 6595-6602, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37365998

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers with increasing incidence worldwide. However, it is still challenging to prevent the relapse of cSCC due to poor drug penetration across the stratum corneum. Herein, we report the design of a microneedle patch loaded with MnO2/Cu2O nanosheets and combretastatin A4 (MN-MnO2/Cu2O-CA4) for the enhanced therapy of cSCC. The prepared MN-MnO2/Cu2O-CA4 patch could effectively deliver adequate drugs locally into the tumor sites. Moreover, the glucose oxidase (GOx)-mimicking activity of MnO2/Cu2O could catalyze glucose to produce H2O2, which combined with the released Cu to induce a Fenton-like reaction to efficiently generate hydroxyl radicals for chemodynamic therapy. Meanwhile, the released CA4 could inhibit cancer cell migration and tumor growth by disrupting the tumor vasculature. Moreover, MnO2/Cu2O was endowed with the ability of photothermal conversion under the irradiation of near-infrared (NIR) laser, which could not only kill the cancer cells but also promote the efficiency of the Fenton-like reaction. Significantly, the photothermal effect did not compromise the GOx-like activity of MnO2/Cu2O, which guaranteed enough production of H2O2 for the sufficient generation of hydroxyl radicals. This work may open avenues for constructing MN-based multimodal treatment for the efficient therapy of skin cancers.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Peróxido de Hidrógeno , Terapia Fototérmica , Compuestos de Manganeso/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Óxidos/farmacología , Radical Hidroxilo
14.
Bioact Mater ; 28: 50-60, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37214257

RESUMEN

As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.

15.
Adv Sci (Weinh) ; 10(22): e2300899, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156756

RESUMEN

As a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich-structured dual-drug depot is developed to trigger a self-intensified starvation therapy and hypoxia-induced chemotherapy sequentially. The two outer layers are 3D-printed using a calcium-crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic-co-glycolic acid)-based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia-inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual-drug-loaded sandwich-like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.


Asunto(s)
Antineoplásicos , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/prevención & control , Factor A de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Tirapazamina/farmacología , Hipoxia
16.
Int J Pharm ; 636: 122849, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933582

RESUMEN

Poly(L-glutamic acid)-g-methoxy poly(ethylene glycol)/Combretastatin A4 (CA4)/BLZ945 nanoparticles (CB-NPs) have shown great potential in synergistic cancer therapy. However, it is still unclear how the nanoparticles' formula, such as injection dose, active agent ratio, and drug loading content, affects the side effects and in vivo efficacy of CB-NPs. In this study, a series of CB-NPs with different BLZ945/CA4 (B/C) ratios and drug loading contents were synthesized and evaluated on a hepatoma (H22) tumor-bearing mice model. The injection dose and B/C ratio were found to have a significant influence on the in vivo anticancer efficacy. The CB-NPs 20 with B/C weight ratio of 0.45/1, and total drug loading content (B + C) of 20.7 wt%, showed the highest potential for clinical application. Systematic pharmacokinetics, biodistribution, and in vivo efficacy evaluation for CB-NPs 20 have been finished, which may provide significant instruction for medicine screening and clinical application.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Nanopartículas , Animales , Ratones , Polietilenglicoles/farmacocinética , Ácido Glutámico , Distribución Tisular , Carcinoma Hepatocelular/tratamiento farmacológico , Ratones Endogámicos BALB C
17.
ACS Appl Mater Interfaces ; 15(4): 4911-4923, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656977

RESUMEN

Biomaterial-based implants hold great potential for postoperative cancer treatment due to the enhanced drug dosage at the disease site and decreased systemic toxicity. However, the elaborate design of implants to avoid complicated chemical modification and burst release remains challenging. Herein, we report a three-dimensional (3D) printed hydrogel scaffold to enable sustained release of drugs for postoperative synergistic cancer therapy. The hydrogel scaffold is composed of Pluronic F127 and sodium alginate (SA) as well as doxorubicin (DOX) and copper ions (F127-SA/Cu-DOX hydrogel scaffold). Benefiting from the coordination of Cu(II) with both SA and DOX, burst release of DOX can be overcome, and prolonged release time can be achieved. The therapeutic efficiency can be adjusted by altering the amount of DOX and Cu(II) in the scaffolds. Moreover, apoptosis and ferroptosis of cancer cells can be induced through the combination of chemotherapy and chemodynamic therapy. In addition, DOX supplies excess hydrogen peroxide to enhance the efficiency of Cu-based chemodynamic therapy. When implanted in the resection site, hydrogel scaffolds effectively inhibit tumor growth. Overall, this study may offer a new strategy for fabricating local implants with synergistic therapeutic performance for preventing postoperative cancer recurrence.


Asunto(s)
Cobre , Hidrogeles , Hidrogeles/química , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Impresión Tridimensional
18.
Analyst ; 148(4): 906-911, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36692072

RESUMEN

Enzyme clustering is widely used in many organisms to increase the catalytic efficiency of cascade reactions. Inspired by nature, organizing enzymes within a cascade reaction also draws much attention in both basic research and industrial processes. An important step for organizing enzymes precisely in vitro is enzyme modification. However, modifying enzymes without sacrificing their activity remains challenging until now. For example, labeling enzymes with DNA, one of the well-established enzyme modification methods, has been shown to significantly reduce the enzymatic activity. Herein we report an enzyme conjugation method that can rescue the reduction of enzymatic activity caused by DNA labeling. We demonstrate that immobilizing DNA-modified enzymes on the vertex of TDNs (tetrahedral DNA nanostructures) enhances the enzymatic activity compared with their unmodified counterparts. Using this strategy, we have further developed an ultra-sensitive and high-throughput electrochemical biosensor for sarcosine detection, which holds great promise for prostate cancer screening.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Neoplasias de la Próstata , Humanos , Masculino , Detección Precoz del Cáncer , Antígeno Prostático Específico , ADN/química , Nanoestructuras/química , Técnicas Biosensibles/métodos
19.
Adv Mater ; 35(14): e2206989, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36566024

RESUMEN

Natural killer (NK) cell therapies show potential for tumor treatment but are immunologically resisted by the overexpressed immunosuppressing tumor cell surface glycans. To reverse this glycan-mediated immunosuppression, the surface NK-inhibitory glycan expressions need to be downregulated and NK-activating glycan levels should be elevated synchronously with optimal efficiency. Here, a core-shell membrane-fusogenic liposome (MFL) is designed to simultaneously achieve the physical modification of NK-activating glycans and biological inhibition of immunosuppressing glycans on the tumor cell surface via a membrane-fusion manner. Loaded into a tumor-microenvironment-triggered-degradable thermosensitive hydrogel, MFLs could be conveniently injected and controllably released into local tumor. Through fusion with tumor cell membrane, the released MFLs could simultaneously deliver sialyltransferase-inhibitor-loaded core into cytoplasm, and anchor NK-activating-glycan-modified shell onto tumor surface. This spatially-differential distribution of core and shell in one cell ensures the effective inhibition of intracellular sialyltransferase to downregulate immunosuppressing sialic acid, and direct presentation of NK-activating Lewis X trisaccharide (LeX) on tumor surface simultaneously. Consequentially, the sialic acid-caused immunosuppression of tumor surface is reprogrammed to be LeX-induced NK activation, resulting in sensitive susceptibility to NK-cell-mediated recognition and lysis for improved tumor elimination. This MFL provides a novel platform for multiplex cell engineering and personalized regulation of intercellular interactions for enhanced cancer immunotherapy.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Neoplasias/terapia , Membrana Celular/metabolismo , Polisacáridos , Sialiltransferasas , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
20.
Biomaterials ; 293: 121942, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512863

RESUMEN

Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Biomimética , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Glutatión/metabolismo , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA