Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Immunol ; 15: 1396927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690276

RESUMEN

Background: Immunotherapy stands as a pivotal modality in the therapeutic landscape for the treatment of advanced hepatocellular carcinoma, yet responses vary among patients. This study delves into the potential impact of sarcopenia, myosteatosis and adiposity indicators, as well as their changes during immunotherapy, on treatment response and prognosis in patients with advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Methods: In this retrospective analysis, 116 patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors were recruited. Skeletal muscle, intramuscular, subcutaneous, and visceral adipose tissue were assessed by computed tomography at the level of the third lumbar vertebrae before and after 3 months of treatment. Sarcopenia and myosteatosis were evaluated by skeletal muscle index and mean muscle density using predefined threshold values. Patients were stratified based on specific baseline values or median values, along with alterations observed during the treatment course. Overall survival (OS) and progression-free survival (PFS) were compared using the log-rank test and a multifactorial Cox proportional risk model. Results: A total of 116 patients were recruited and divided into two cohorts, 81 patients for the training set and 35 patients for the validating set. In the overall cohort, progressive sarcopenia (P=0.021) and progressive myosteatosis (P=0.001) were associated with objective response rates, whereas progressive myosteatosis (P<0.001) was associated with disease control rates. In the training set, baseline sarcopenia, myosteatosis, and subcutaneous and visceral adipose tissue were not significantly associated with PFS and OS. In multivariate analysis adjusting for sex, age, and other factors, progressive sarcopenia(P=0.002) and myosteatosis (P=0.018) remained independent predictors of PFS. Progressive sarcopenia (P=0.005), performance status (P=0.006) and visceral adipose tissue index (P=0.001) were all independent predictors of OS. The predictive models developed in the training set also had good feasibility in the validating set. Conclusion: Progressive sarcopenia and myosteatosis are predictors of poor clinical outcomes in patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors, and high baseline visceral adiposity is associated with a poorer survival.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Sarcopenia , Humanos , Sarcopenia/etiología , Sarcopenia/diagnóstico , Masculino , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Persona de Mediana Edad , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/tratamiento farmacológico , Estudios Retrospectivos , Anciano , Pronóstico , Adulto , Músculo Esquelético/patología , Adiposidad
2.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704588

RESUMEN

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antígenos CD34/metabolismo
3.
Sci Adv ; 9(4): eadd8977, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706185

RESUMEN

Cervical squamous cell carcinoma (CESC) is a prototypical human cancer with well-characterized pathological stages of initiation and progression. However, high-resolution knowledge of the transcriptional programs underlying each stage of CESC is lacking, and important questions remain. We performed single-cell RNA sequencing of 76,911 individual cells from 13 samples of human cervical tissues at various stages of malignancy, illuminating the transcriptional tumorigenic trajectory of cervical epithelial cells and revealing key factors involved in CESC initiation and progression. In addition, we found significant correlations between the abundance of specific myeloid, lymphoid, and endothelial cell populations and the progression of CESC, which were also associated with patients' prognosis. Last, we demonstrated the tumor-promoting function of matrix cancer-associated fibroblasts via the NRG1-ERBB3 pathway in CESC. This study provides a valuable resource and deeper insights into CESC initiation and progression, which is helpful in refining CESC diagnosis and for the design of optimal treatment strategies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinoma de Células Escamosas/genética , Cognición , Células Endoteliales , Células Epiteliales , Neoplasias del Cuello Uterino/genética
4.
Biomaterials ; 293: 121980, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580722

RESUMEN

There is an urgent medical need to develop effective therapies that can ameliorate damage to the radiation-exposed hematopoietic system. Nanozymes with robust antioxidant properties have a therapeutic potential for mitigating radiation-induced hematopoietic injury. However, enhancing nanozyme recruitment to injured tissues in vivo while maintaining their catalytic activity remains a great challenge. Herein, we present the design and preparation of a biomimetic nanoparticle, a mesenchymal stem cell membrane camouflaged Prussian blue nanozyme (PB@MSCM), which exhibits biocompatible surface properties and demonstrates enhanced injury site-targeting towards the irradiated murine bone marrow niche. Notably, the constructed PB@MSCM possessed redox enzyme-mimic catalytic activity and could scavenge overproduced reactive oxygen species in the irradiated bone marrow cells, both in vitro and ex vivo. More importantly, the administration of PB@MSCM significantly mitigated hematopoietic cell apoptosis and accelerated the regeneration of hematopoietic stem and progenitor cells. Our findings provide a new targeted strategy to improve nanozyme therapy in vivo and mitigate radiation-induced hematopoietic injury.


Asunto(s)
Biomimética , Médula Ósea , Ratones , Animales , Ferrocianuros , Células de la Médula Ósea
5.
Nat Commun ; 13(1): 346, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039499

RESUMEN

The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.


Asunto(s)
Cromatina/química , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Código de Histonas , Animales , Análisis por Conglomerados , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos/genética , Genoma , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
6.
Sci Adv ; 8(1): eabg5369, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995116

RESUMEN

Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.

8.
Front Cell Dev Biol ; 9: 699263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458261

RESUMEN

Hematopoietic stem cells (HSCs) are derived from hemogenic endothelial cells (HECs) during embryogenesis. The HSC-primed HECs increased to the peak at embryonic day (E) 10 and have been efficiently captured by the marker combination CD41-CD43-CD45-CD31+CD201+Kit+CD44+ (PK44) in the aorta-gonad-mesonephros (AGM) region of mouse embryos most recently. In the present study, we investigated the spatiotemporal and functional heterogeneity of PK44 cells around the time of emergence of HSCs. First, PK44 cells in the E10.0 AGM region could be further divided into three molecularly different populations showing endothelial- or hematopoietic-biased characteristics. Specifically, with the combination of Kit, the expression of CD93 or CD146 could divide PK44 cells into endothelial- and hematopoietic-feature biased populations, which was further functionally validated at the single-cell level. Next, the PK44 population could also be detected in the yolk sac, showing similar developmental dynamics and functional diversification with those in the AGM region. Importantly, PK44 cells in the yolk sac demonstrated an unambiguous multilineage reconstitution capacity after in vitro incubation. Regardless of the functional similarity, PK44 cells in the yolk sac displayed transcriptional features different from those in the AGM region. Taken together, our work delineates the spatiotemporal characteristics of HECs represented by PK44 and reveals a previously unknown HSC competence of HECs in the yolk sac. These findings provide a fundamental basis for in-depth study of the different origins and molecular programs of HSC generation in the future.

9.
Front Oncol ; 11: 658152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395242

RESUMEN

AIMS: Survival benefit of liver cancer patients who undergo palliative radiotherapy varies from person to person. The present study aims to identify indicators of survival of advanced liver cancer patients receiving palliative radiotherapy. PATIENTS AND METHODS: One hundred and fifty-nine patients treated with palliative radiotherapy for advanced liver cancer were retrospectively assessed. Of the 159 patients, 103 patients were included for prediction model construction in training phase, while other 56 patients were analyzed for external validation in validation phase. In model training phase, clinical characteristics of included patients were evaluated by Kaplan-Meier curves and log-rank test. Thereafter, multivariable Cox analysis was taken to further identify characteristics with potential for prediction. In validation phase, a separate dataset including 56 patients was used for external validation. Harrell's C-index and calibration curve were used for model evaluation. Nomograms were plotted based on the model of multivariable Cox analysis. RESULTS: Thirty-one characteristics of patients were investigated in model training phase. Based on the results of Kaplan-Meier plots and log-rank tests, 6 factors were considered statistically significant. On multivariable Cox regression analysis, bone metastasis (HR = 1.781, P = 0.026), portal vein tumor thrombus (HR = 2.078, P = 0.015), alpha-fetoprotein (HR = 2.098, P = 0.007), and radiation dose (HR = 0.535, P = 0.023) show significant potential to predict the survival of advanced liver cancer patients treated with palliative radiotherapy. Moreover, nomograms predicting median overall survival, 1- and 2-year survival probability were plotted. The Harrell's C-index of the predictive model is 0.709(95%CI, 0.649-0.769) and 0.735 (95%CI, 0.666-0.804) for training model and validation model respectively. Calibration curves of the 1- and 2-year overall survival of the predictive model indicate that the predicted probabilities of OS are very close to the actual observed outcomes both in training and validation phase. CONCLUSION: Bone metastasis, portal vein tumor thrombus, alpha-fetoprotein and radiation dose are independent prognostic factors for the survival of advanced liver cancer patients treated with palliative radiotherapy.

10.
EMBO J ; 40(10): e105806, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33755220

RESUMEN

PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENß. Here, we report the identification of PTENε (also named as PTEN5), a novel N-terminal-extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5'UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Seudópodos/metabolismo , Animales , Western Blotting , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Fosfohidrolasa PTEN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Cell Res ; 31(7): 742-757, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33473154

RESUMEN

Human skeletal stem cells (SSCs) have been discovered in fetal and adult long bones. However, the spatiotemporal ontogeny of human embryonic SSCs during early skeletogenesis remains elusive. Here we map the transcriptional landscape of human limb buds and embryonic long bones at single-cell resolution to address this fundamental question. We found remarkable heterogeneity within human limb bud mesenchyme and epithelium, and aligned them along the proximal-distal and anterior-posterior axes using known marker genes. Osteo-chondrogenic progenitors first appeared in the core limb bud mesenchyme, which give rise to multiple populations of stem/progenitor cells in embryonic long bones undergoing endochondral ossification. Importantly, a perichondrial embryonic skeletal stem/progenitor cell (eSSPC) subset was identified, which could self-renew and generate the osteochondral lineage cells, but not adipocytes or hematopoietic stroma. eSSPCs are marked by the adhesion molecule CADM1 and highly enriched with FOXP1/2 transcriptional network. Interestingly, neural crest-derived cells with similar phenotypic markers and transcriptional networks were also found in the sagittal suture of human embryonic calvaria. Taken together, this study revealed the cellular heterogeneity and lineage hierarchy during human embryonic skeletogenesis, and identified distinct skeletal stem/progenitor cells that orchestrate endochondral and intramembranous ossification.


Asunto(s)
Osteogénesis , Transcriptoma , Diferenciación Celular , Factores de Transcripción Forkhead , Humanos , Mesodermo , Osteogénesis/genética , Proteínas Represoras , Cráneo , Células Madre
12.
Front Oncol ; 10: 570130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194660

RESUMEN

Since December 2019, a novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly engulfed the world. Cancer patients infected with COVID-19 are considered to carry higher severity of the disease and higher mortality rate than common COVID-19 patients in previous studies. However, due to the poor clinical information on COVID-19 patients with cancer, the evidences that supported this conclusion are insufficient. At present, rather limited reports have analyzed the clinical data of breast cancer patients infected with COVID-19. Therefore, in this retrospective study, we described the clinical characteristics and the outcomes of 35 COVID-19 patients with breast cancer and compared 55 COVID-19 patients without cancer and 81 COVID-19 patients with other types of cancer as controls. Our data showed that there were no differences in disease severity and outcomes between the COVID-19 patients with breast cancer and the common COVID-19 patients, which was in contrast to previous studies. In addition, compared with other types of cancer patients, asymptomatic infections and mild cases among breast cancer patients made up a substantially larger proportion. Our results indicated that the clinical characteristics of breast cancer patients were milder than those of other types of cancer patients, but there were no significant differences in outcomes between the two groups.

13.
Front Pharmacol ; 11: 576994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192519

RESUMEN

Background: At present, the epidemic of the novel coronavirus disease 2019 (COVID-19) has quickly engulfed the world. Inflammatory cytokines are associated with the severity and outcomes of patients with COVID-19. However, the prognostic value of pro-inflammatory factors in cancer patients with COVID-19 are unknown. Methods: A multi-center, retrospective, cross-sectional study, based on five designated tertiary hospitals for the treatment of COVID-19 in Hubei Province, China. 112 cancer patients with COVID-19, and 105 COVID-19 patients without cancer were enrolled in the study between January 1st, 2020 and April 30th, 2020. The risk assessment of pro-inflammatory factors for disease severity and clinical adverse outcomes was identified by univariable and multivariable logistic regression models. Results: Of the 112 cancer patients with COVID-19, 40 (35.7%) patients were in critical condition and 18 (16.1%) patients died unfortunately. Univariate and multivariate analysis demonstrated that hemoglobin level and pro-inflammatory neutrophils and C-reactive protein (CRP), can be used as independent factors affecting the severity of COVID-19; Meanwhile, pro-inflammatory neutrophils and CRP can be used as an independent influencing factor for adverse clinical outcome of death. Moreover, the dynamic changes of neutrophils and CRP were also presented, and compared with COVID-19 patients without cancer, cancer patients with COVID-19 showed higher neutrophil counts and CRP levels. Conclusion: In cancer patients with COVID-19, the significant increase in pro-inflammatory neutrophils and CRP indicated a more critical illness and adverse clinical outcome, and pro-inflammatory neutrophils and CRP played a greater adverse role compare with COVID-19 patients without cancer, which may be the cause of critical illness and adverse clinical outcomes of cancer patients with COVID-19.

14.
J Nanosci Nanotechnol ; 20(12): 7451-7456, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711614

RESUMEN

A stable monodisperse hydroxyapatite (HAP) nanoparticle suspension was prepared by chemical method-assisted ultrasound irradiation. HAP nanoparticles were characterized by atomic force microscopy (AFM) and particle size potentiometry. The effects of HAP nanoparticles on BEL-7402 human hepatocarcinoma cells were studied by MTT colorimetric assay and morphological observation. The mechanism of HAP nanoparticles was studied by analyzing single cell fluorescence element microregion, the change of ultrastructure and cell cycle. The experimental results show that HAP nanoparticles have an obvious inhibitory effect on BEL-7402 human hepatocarcinoma cells in vitro. By entering the cancer cells and blocking the progress of cell cycle, HAP nanoparticles induce the accumulation of cells in G1 phase, which leads to cancer cell swelling and apoptosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Trióxido de Arsénico , Durapatita , Humanos , Tamaño de la Partícula
15.
Cell Res ; 30(5): 376-392, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203131

RESUMEN

Hematopoietic stem cells (HSCs) in adults are believed to be born from hemogenic endothelial cells (HECs) in mid-gestational embryos. Due to the rare and transient nature, the HSC-competent HECs have never been stringently identified and accurately captured, let alone their genuine vascular precursors. Here, we first used high-precision single-cell transcriptomics to unbiasedly examine the relevant EC populations at continuous developmental stages with intervals of 0.5 days from embryonic day (E) 9.5 to E11.0. As a consequence, we transcriptomically identified two molecularly different arterial EC populations and putative HSC-primed HECs, whose number peaked at E10.0 and sharply decreased thereafter, in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region. Combining computational prediction and in vivo functional validation, we precisely captured HSC-competent HECs by the newly constructed Neurl3-EGFP reporter mouse model, and realized the enrichment further by a combination of surface markers (Procr+Kit+CD44+, PK44). Surprisingly, the endothelial-hematopoietic dual potential was rarely but reliably witnessed in the cultures of single HECs. Noteworthy, primitive vascular ECs from E8.0 experienced two-step fate choices to become HSC-primed HECs, namely an initial arterial fate choice followed by a hemogenic fate conversion. This finding resolves several previously observed contradictions. Taken together, comprehensive understanding of endothelial evolutions and molecular programs underlying HSC-primed HEC specification in vivo will facilitate future investigations directing HSC production in vitro.


Asunto(s)
Aorta/embriología , Hemangioblastos/citología , Hematopoyesis , Transcriptoma , Animales , Células Cultivadas , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Análisis de la Célula Individual
16.
Blood ; 133(19): 2079-2089, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30926592

RESUMEN

Neutrophils are a major component of immune defense and are recruited through neutrophil chemotaxis in response to invading pathogens. However, the molecular mechanism that controls neutrophil chemotaxis remains unclear. Here, we report that PTENα, the first isoform identified in the PTEN family, regulates neutrophil deformability and promotes chemotaxis of neutrophils. A high level of PTENα is detected in neutrophils and lymphoreticular tissues. Homozygous deletion of PTENα impairs chemoattractant-induced migration of neutrophils. We show that PTENα physically interacts with cell membrane cross-linker moesin through its FERM domain and dephosphorylates moesin at Thr558, which disrupts the association of filamentous actin with the plasma membrane and subsequently induces morphologic changes in neutrophil pseudopodia. These results demonstrate that PTENα acts as a phosphatase of moesin and modulates neutrophil-mediated host immune defense. We propose that PTENα signaling is a potential target for the treatment of infections and immune diseases.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Neutrófilos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/inmunología , Proteínas de Microfilamentos/metabolismo , Neutrófilos/inmunología , Fosfohidrolasa PTEN/inmunología
17.
Medchemcomm ; 9(4): 632-638, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108954

RESUMEN

Tumor cells reprogram their cellular metabolism by switching from oxidative phosphorylation to aerobic glycolysis to support aberrant cell proliferation. Suppressing tumor cell metabolism has become an attractive strategy for treating cancer patients. In this study, we identified a 2,3-didithiocarbamate-substituted naphthoquinone 3i that inhibited the proliferation of tumor cells by disturbing their metabolism. Compound 3i reduced cancer cell viability with IC50 values from 50 nM to 150 nM against HCT116, MCF7, MDA-MB231, HeLa, H1299 and B16 cells. Further, compound 3i was found to suppress ATP production in cultured cancer cells, inhibit the M2 isoform of pyruvate kinase (PKM2) which is a rate-limiting enzyme in the glycolytic pathway and block the subsequent transcription of the downstream genes GLUT1, LDH and CCND1. In addition, exposure to compound 3i significantly suppressed tumor growth in a B16 melanoma transplantation mouse model and a spontaneous breast carcinoma mouse model in vivo. The identification of compound 3i as a tumor metabolic suppressor not only offers a candidate compound for cancer therapy, but also provides a tool for an in-depth study of tumor metabolism.

18.
Eur J Med Chem ; 138: 343-352, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28688274

RESUMEN

Pyruvate kinase M2 (PKM2) is a rate-limiting enzyme of the glycolytic pathway which is highly expressed in cancer cells. Cancer cells rely heavily on PKM2 for anabolic and energy requirements, and specific targeting of PKM2 therefore has potential as strategy for cancer therapy. Here, we report the synthesis and biologic evaluation of novel naphthoquinone derivatives as selective small molecule inhibitors of PKM2. Some target compounds, such as compound 3k, displayed more potent PKM2 inhibitory activity than the reported optimal PKM2 inhibitor shikonin. The well performing compound 3k also showed nanomolar antiproliferative activity toward a series of cancer cell lines with high expression of PKM2 including HCT116, Hela and H1299 with IC50 values ranging from 0.18 to 1.56 µM. Moreover, compound 3k exhibited more cytotoxicity on cancer cells than normal cells. The identification of novel potent small molecule inhibitors of PKM2 not only offers candidate compounds for cancer therapy, but also provides a tool with which to evaluate the function of PKM2 in depth.


Asunto(s)
Descubrimiento de Drogas , Naftoquinonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piruvato Quinasa/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piruvato Quinasa/metabolismo , Relación Estructura-Actividad
19.
Int J Radiat Biol ; 92(10): 543-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27501010

RESUMEN

PURPOSE: Although the significance of cell cycle checkpoints in overcoming low-dose hyper-radiosensitivity (HRS) has been proposed, the underlying mechanism of HRS in human hepatocellular cells remains unclear. Therefore, the aim of this study was to characterize HRS inhuman hepatocellular HepG2 cells and to explore the molecular mechanism(s) mediating this response. MATERIALS AND METHODS: HepG2 cells were exposed to various single doses of γ radiation (from 0 Gy to 4 Gy), and then were assayed at subsequent time-points. Survival curves were then generated using a linear-quadratic (LQ) equation and a modified induced repair model (MIRM). The percentage of cells in the G1, G2/M, and S phases of the cell cycle were also examined using propidium iodide (PI) staining and flow cytometry. Levels of total cell division cyclin 25C (Cdc25C) and phosphorylated Cdc25C were examined by Western blotting. RESULTS: Low-dose γ radiation (<0.3 Gy) induced HRS in HepG2 cells, while doses of 0.3, 0.5, and 2.0 Gy γ radiation significantly arrested HepG2 cells in the G2/M phase. While total Cdc25C levels remained unchanged after irradiation, levels of phosphorylated Cdc25C markedly increased 6, 16, and 24 h after treatment with 0.5 or 2.0 Gy radiation, and they peaked after 16 h. The latter observation is consistent with the G2/M arrest that was detected following irradiation. CONCLUSIONS: These findings indicate that low-dose HRS in HepG2 cells may be associated with Cdc25C-mediated G2/M cell cycle checkpoint control.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Rayos gamma , Tolerancia a Radiación , Fosfatasas cdc25/metabolismo , Células Hep G2 , Humanos , Dosis de Radiación
20.
Cell Rep ; 13(7): 1295-1303, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26549452

RESUMEN

PTEN is a tumor suppressor frequently mutated in human cancers. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT cascade, and nuclear PTEN guards the genome by multiple mechanisms. Here, we report that PTEN physically associates with the minichromosome maintenance complex component 2 (MCM2), which is essential for DNA replication. Specifically, PTEN dephosphorylates MCM2 at serine 41 (S41) and restricts replication fork progression under replicative stress. PTEN disruption results in unrestrained fork progression upon replication stalling, which is similar to the phenotype of cells expressing the phosphomimic MCM2 mutant S41D. Moreover, PTEN is necessary for prevention of chromosomal aberrations under replication stress. This study demonstrates that PTEN regulates DNA replication through MCM2 and loss of PTEN function leads to replication defects and genomic instability. We propose that PTEN plays a critical role in maintaining genetic stability through a replication-specific mechanism, and this is a crucial facet of PTEN tumor suppressor activity.


Asunto(s)
Replicación del ADN , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Fosfohidrolasa PTEN/fisiología , Inestabilidad Cromosómica , Células HCT116 , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA