Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antibodies (Basel) ; 12(3)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37753973

RESUMEN

This study presents a novel degradation pathway of a human immunoglobulin G (IgG) molecule featuring a light chain N-terminal asparagine. We thoroughly characterize this pathway and investigate its charge profiles using cation exchange chromatography (CEX) and capillary isoelectric focusing (cIEF). Beyond the well-documented asparagine deamidation into isoaspartic acid, aspartic acid, and succinimide intermediate, a previously unreported clipping degradation pathway is uncovered. This newly identified clipped N-terminal IgG variant exhibits a delayed elution in CEX, categorized as a "basic variant", while retaining the same main peak isoelectric point (pI) in cIEF. The influence of temperature and pH on N-terminal asparagine stability is assessed across various stressed conditions. A notable correlation between deamidation percentage and clipped products is established, suggesting a potential hydrolytic chemical reaction underlying the clipping process. Furthermore, the impact of N-terminal asparagine modifications on potency is evaluated through ELISA binding assays, revealing minimal effects on binding affinity. Sequence alignment reveals homology to a human IgG with the germline gene from Immunoglobulin Lambda Variable 6-57 (IGLV6-57), which has implications for amyloid light-chain (AL) amyloidosis. This discovery of the N-terminal clipping degradation pathway contributes to our understanding of immunoglobulin light chain misfolding and amyloid fibril deposition under physiological conditions.

2.
ACS Appl Mater Interfaces ; 15(26): 31584-31594, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339248

RESUMEN

Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36279778

RESUMEN

Monoclonal antibodies (mAbs) are complex glycoproteins that are developed for treatment of various therapeutic indications such as cancer and autoimmune diseases. MAbs are glycosylated at conserved asparagine residues (N-X-S/T) of the Fc region at amino acid position 297 of the heavy chain. Glycans are important in governing the functions of efficacy and serum half-life of protein therapeutics and are part of the critical quality attribute panel for release testing. Traditionally, N-linked glycans are released from glycoproteins after denaturation and enzymatic digestion with PNGase F, followed by fluorescent labeling of the liberated glycans. The labeled glycans are then separated using hydrophilic liquid chromatography (HILIC) with fluorescence detection to generate chromatographic profile. Despite decades of use, this strenuous process remains unchanged, utilizing toxic reagents and extended sample preparation time. As an intervention, this report showcases a novel, label-free approach to detect and quantify N-glycans without using fluorescent labeling. Separation of glycans using mixed-mode PGC column along with detection of non-derivatized glycans using charged aerosol detector, the overall turnaround time can be greatly reduced with significant cost savings. The label-free method provides similar quantitative results as the conventional fluorescent labeled method, confirming the validity of the method for product release.


Asunto(s)
Glicoproteínas , Polisacáridos , Polisacáridos/análisis , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Cromatografía Liquida/métodos , Glicoproteínas/química , Anticuerpos Monoclonales/química , Aerosoles
4.
Appl Microbiol Biotechnol ; 106(3): 1057-1066, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35072737

RESUMEN

Therapeutic monoclonal antibodies (mAbs), primarily immunoglobin G1 (IgG1) and IgG4 with an engineered CPPC motif in its hinge region, are predominant biologics. Inter-chain disulfide bonds of IgG mAbs are crucial to maintaining IgG integrity. Inter-chain disulfide bond-reduced low molecular weight (LMW) is considered as one of quality attributes of IgG drug substance and is observed in drug substance manufacturing. In this study, we demonstrate that IgG1 and IgG4 are susceptible to the reducing agent TCEP differently and they follow different pathways to form LMWs. Our study shows that IgG1 is more sensitive to TCEP than IgG4. Both therapeutic IgG1 and human blood plasma IgG1 follow a heavy-heavy-light chain (HHL) pathway, featured with HHL and HH as intermediate species. Human blood plasma IgG4 with a CPSC motif in its hinge region follows heavy-light chain (HL) pathway, featured with HL as the intermediate species. However, therapeutic IgG4 follows a hybrid pathway with the HL pathway as the primary and the HHL pathway as the secondary. These experimental observations are further explained using solvent accessibility of inter-chain disulfide bonds obtained from computational modeling and molecular dynamics simulations. Findings from this study provide mechanistic insights of LMW formation of IgG1 and IgG4, which suggest selection of IgG1 or IgG4 for bispecific antibodies and cysteine-based antibody-drug conjugates. KEY POINTS: • Experimentally discovered preferable disulfide bond reduction pathways between IgG1 and IgG4 antibodies, driven by the different solvent accessibilities of these disulfide bonds. • Computationally explained the solvent accessibility aided by molecular dynamics simulations. • Provided insights in developing robust biologics process and designing bispecific antibodies and cysteine-based antibody-drug conjugates.


Asunto(s)
Anticuerpos Biespecíficos , Disulfuros , Anticuerpos Monoclonales , Cisteína , Humanos , Inmunoglobulina G
5.
Metabolites ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940581

RESUMEN

Much progress has been made in improving the viable cell density of bioreactor cultures in monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP and could be used for clone selection or medium supplementation. An initial library of 12 clones, each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. To evaluate whether these metabolites could be used as indicators to identify clones with potential for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones expressing a third antibody. These experiments found that aspartate and cystine were positively correlated with qP, confirming the results from untargeted analysis. To investigate whether qP correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several of these metabolites were tested as medium additives during cell culture. Medium supplementation with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies demonstrate the potential for using metabolomics to discover novel metabolite additives that yield higher volumetric productivity in biologics production processes.

6.
Biotechnol Bioeng ; 116(9): 2275-2284, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31062872

RESUMEN

Multicolumn capture chromatography is gaining increased attention lately due to the significant economic and process advantages it offers compared with traditional batch mode chromatography. However, for wide adoption of this technology in clinical and commercial space, it requires scalable models for executing viral validation studies. In this study, viral validation studies were conducted under cGLP guidelines to assess retro- (X-MuLV) and parvo-virus (MVM) clearance across twin-column continuous capture chromatography (CaptureSMB). A surrogate model was also developed using standard batch mode chromatography based on flow path modifications to mimic the loading strategy used in CaptureSMB. The results show that a steady state was achieved by the second cycle for both antibody binding and virus clearance and that the surrogate model using batch mode chromatography equipment provided impurity clearance that was comparable to that obtained during cyclical operation of CaptureSMB. Further, the log reduction values (LRVs) achieved during CaptureSMB were also comparable to the LRVs obtained using standard batch capture chromatography. This was expected since the mode of virus separation during protein A chromatography is primarily based on removal during the flow through and wash steps. Finally, this study also presents assessments on the resin cleaning strategy during continuous chromatography and how the duration of clean-in-place solution exposure impacts virus carryover.


Asunto(s)
Virus de la Leucemia Murina/química , Virus Diminuto del Ratón/química , Modelos Químicos , Inactivación de Virus , Cromatografía Liquida , Proteína Estafilocócica A/química
7.
Anal Biochem ; 537: 13-19, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28844814

RESUMEN

Imaged capillary isoelectric focusing (icIEF) separates ampholytic components of biomolecules in an electric field according to their isoelectric points and has been used for protein charge variants quantification and characterization. Denaturants are ordinarily incorporated into icIEF to stabilize charge species in solution. In certain circumstances, however, denaturants are detrimental to stable isoelectric separation of proteins due to their unique structural and biophysical features, such as an aggregation-prone antibody we encountered recently. Here we report our novel matrix formula non-detergent sulfobetaine and taurine (NDSB-T). It is deprived of denaturants that notably ameliorates the assay robustness and peak resolution for this antibody. NDSB-T is a combination of non-detergent sulfobetaine (NDSB) and taurine possessing the stabilization and separation power while maintaining protein integrity. As a result, assay throughputs are tremendously increased for more than 10 folds along with extraordinarily improved assay accuracy. Furthermore, NDSB-T can separate and quantify protein charge species in native state and therefore avoid partial denaturation derived peaks which are often misleading and hard to characterize. NDSB-T may be a valuable tool for proteins incompatible with conventional icIEF matrices and potentially opens a new window for icIEF assay in native conditions.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar , Focalización Isoeléctrica , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Betaína/análogos & derivados , Betaína/química , Glicerol/química , Desnaturalización Proteica , Taurina/química , Urea/química
8.
Anal Chem ; 89(10): 5294-5302, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28402653

RESUMEN

Host cell proteins (HCPs) are process-related impurities of biopharmaceuticals that remain at trace levels despite multiple stages of downstream purification. Currently, there is interest in implementing LC-MS in biopharmaceutical HCP profiling alongside conventional ELISA, because individual species can be identified and quantitated. Conventional data dependent LC-MS is hampered by the low concentration of HCP-derived peptides, which are 5-6 orders of magnitude less abundant than the biopharmaceutical-derived peptides. In this paper, we present a novel data independent acquisition (DIA)-MS workflow to identify HCP peptides using automatically combined targeted and untargeted data processing, followed by verification and quantitation using parallel reaction monitoring (PRM). Untargeted data processing with DIA-Umpire provided a means of identifying HCPs not represented in the assay library used for targeted, peptide-centric, data analysis. An IgG1 monoclonal antibody (mAb) purified by Protein A column elution, cation exchange chromatography, and ultrafiltration was analyzed using the workflow with 1D-LC. Five protein standards added at 0.5 to 100 ppm concentrations were detected in the background of the purified mAb, demonstrating sensitivity to low ppm levels. A calibration curve was constructed on the basis of the summed peak areas of the three highest intensity fragment ions from the highest intensity peptide of each protein standard. Sixteen HCPs were identified and quantitated on the basis of the calibration curve over the range of low ppm to over 100 ppm in the purified mAb sample. The developed approach achieves rapid HCP profiling using 1D-LC and specific identification exploiting the high mass accuracy and resolution of the mass spectrometer.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Espectrometría de Masas , Proteínas/análisis , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Células CHO , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Bases de Datos de Proteínas , Péptidos/análisis , Péptidos/aislamiento & purificación , Proteínas/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación
9.
Pharm Res ; 33(4): 932-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26658915

RESUMEN

PURPOSE: Discoloration of protein therapeutics has drawn increased attention recently due to concerns of potential impact on quality and safety. Investigation of discoloration in protein therapeutics for comparability is particularly challenging primarily for two reasons. First, the description of color or discoloration is to certain extent a subjective characteristic rather than a quantitative attribute. Secondly, the species contributing to discoloration may arise from multiple sources and are typically present at trace levels. Our purpose is to development a systematic approach that allows effective identification of the color generating species in protein therapeutics. METHODS: A yellow-brown discoloration event observed in a therapeutic protein was investigated by optical spectroscopy, ultra-performance liquid chromatography, and mass spectrometry (MS). RESULTS: Majority of the color generating species were identified as oxidatively modified protein. The location of the oxidized amino acid residues were identified by MS/MS. In addition, the impact of process-related impurities co-purified from media on discoloration was also investigated. Finally a semi-quantitative scale to estimate the contribution of each color source is presented, which revealed oxidized peptides are the major contributors. CONCLUSIONS: A systematic approach was developed for identification of the color generating species in protein therapeutics and for estimation of the contribution of each color source.


Asunto(s)
Péptidos/química , Proteínas/química , Animales , Células CHO , Cromatografía Líquida de Alta Presión/métodos , Color , Cricetulus , Contaminación de Medicamentos , Histidina/análisis , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Proteínas Recombinantes de Fusión/química , Espectrometría de Masas en Tándem/métodos , Triptófano/análisis
10.
J Biotechnol ; 192 Pt A: 11-9, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25285370

RESUMEN

In this work, a proof of concept elastin-like polypeptide-Z domain fusion (ELP-Z) based monoclonal antibody (mAb) affinity precipitation process is developed using scaled-down filtration techniques. Tangential flow filtration (TFF) is examined for the recovery of ELP-Z-mAb precipitates formed during the mAb binding step and the ELP-Z precipitates formed during the mAb elution step. TFF results in complete precipitate recovery during both stages of the process and high host cell protein and DNA impurity clearance after diafiltration. Total recycle TFF experiments are then employed to determine permeate flux as a function of the precipitate concentration for both stages of the process. While the ELP-Z-mAb precipitate recovery step resulted in high permeate flux (550-600L/m(2)/h/bar), the ELP-Z precipitates are shown to severely foul the TFF membrane, causing rapid flux decay. Confocal microscopy of the ELP-Z-mAb and ELP-Z precipitates suggests significant differences in the morphology and the kinetics of formation of these precipitates, which is likely responsible for their different behavior during TFF. Finally, an alternative normal flow filtration strategy is developed for the ELP-Z precipitate recovery step during mAb elution, using a combination of 5µm and a 0.45/0.2µm filters. Using this approach, the ELP-Z precipitates are separated from the final mAb elution pool at high volumetric throughputs and high ELP-Z recovery (96%) is obtained after resolubilization from the filter. This study demonstrates that the ELP-Z affinity precipitation process can be readily scaled up using conventional membrane processing.


Asunto(s)
Anticuerpos Monoclonales/química , Péptidos/química , Proteínas Recombinantes de Fusión/química , Anticuerpos Monoclonales/aislamiento & purificación , Afinidad de Anticuerpos , Precipitación Química , Elastina , Escherichia coli/genética , Escherichia coli/metabolismo , Filtración , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Biotechnol Bioeng ; 111(8): 1595-603, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24595842

RESUMEN

In this work, a proof of concept elastin-like polypeptide-Z domain fusion (ELP-Z) based affinity precipitation process is developed for monoclonal antibody (mAb) purification from industrial harvest feeds. Greater than 99% mAb recoveries are obtained during the initial binding step of the process for both pure mAb and the mAb harvest feeds. Great than 90% overall mAb yields are also obtained for the subsequent elution step of the process with no measurable mAb aggregation. The process is shown to result in more than 2 logs of host cell protein (HCP) and more than 4 logs of DNA clearance from the harvest feed. While the overall mAb yield and HCP clearance for the affinity precipitation process was comparable to Protein A chromatography the DNA clearance was clearly superior. Performance is maintained for mAb final elution concentrations up to 20 g/L, demonstrating the ability of the process to both concentrate and purify the mAb. Effective ELP-Z regeneration is also demonstrated using 0.1 M NaOH with no adverse effect on subsequent capture efficiency. Finally, the reusability of the ELP-Z construct and robustness of the process is demonstrated for up to three purification-regeneration cycles with minimal product and impurity carryover and high yields and purity. This work demonstrates that the ELP-Z based precipitation approach can be successfully employed as an affinity capture step for industrial mAbs.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Cromatografía de Afinidad/métodos , Elastina/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Precipitación Química , Cromatografía en Gel/métodos , Cromatografía de Fase Inversa/métodos , Elastina/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína Estafilocócica A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA