Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Commun ; 15(1): 8624, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366973

RESUMEN

M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1ß, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.


Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Inflamación , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Proteínas Proto-Oncogénicas c-mdm2 , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Óxido Nítrico/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Inflamación/metabolismo , Inflamación/inmunología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratones Endogámicos C57BL , Endotoxemia/metabolismo , Endotoxemia/inmunología , Transducción de Señal , Masculino , Lipopolisacáridos , Ubiquitinación , Sepsis/inmunología , Sepsis/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
Protein Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916435

RESUMEN

Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre- and early-symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early-onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with post-symptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over nine years. The most common adverse events (AEs) within two months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with post-symptomatic juvenile MLD.

3.
Int J Surg ; 110(9): 5471-5482, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781035

RESUMEN

BACKGROUND: Sleep problems are prevalent. However, the impact of sleep patterns on digestive diseases remains uncertain. Moreover, the interaction between sleep patterns and genetic predisposition with digestive diseases has not been comprehensively explored. METHODS: Four hundred ten thousand five hundred eighty-six participants from UK Biobank with complete sleep information were included in the analysis. Sleep patterns were measured by sleep scores as the primary exposure, based on five healthy sleep behaviors. Individual sleep behaviors were secondary exposures. Genetic risk of the digestive diseases was characterized by polygenic risk score. Primary outcome was incidence of 16 digestive diseases. RESULTS: Healthy sleep scores showed dose-response associations with reduced risks of digestive diseases. Compared to participants scoring 0-1, those scoring 5 showed a 28% reduced risk of any digestive disease, including a 50% decrease in irritable bowel syndrome, 37% in non-alcoholic fatty liver disease, 35% in peptic ulcer, 34% in dyspepsia, 32% in gastroesophageal reflux disease, 28% in constipation, 25% in diverticulosis, 24% in severe liver disease, and 18% in gallbladder disease, whereas no correlation was observed with inflammatory bowel disease and pancreatic disease. Participants with poor sleep and high genetic risk exhibited approximately a 60% increase in the risk of digestive diseases. A healthy sleep pattern is linked to lower digestive disease risk in participants of all genetic risk levels. CONCLUSIONS: In this large population-based cohort, a healthy sleep pattern was associated with a reduced risk of digestive diseases, regardless of genetic susceptibility. The authors' findings underscore the potential impact of healthy sleep traits in mitigating the risk of digestive diseases.


Asunto(s)
Enfermedades del Sistema Digestivo , Predisposición Genética a la Enfermedad , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Enfermedades del Sistema Digestivo/genética , Enfermedades del Sistema Digestivo/epidemiología , Anciano , Adulto , Reino Unido/epidemiología , Sueño/fisiología , Sueño/genética , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/fisiopatología , Estudios de Cohortes
4.
Cell Prolif ; 57(5): e13591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319150

RESUMEN

Highly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC. PBMCs from seven HAGC patients, six normal advanced gastric cancer (NAGC) patients, and five healthy individuals were analysed by single-cell RNA sequencing. The expression of genes of interest was validated by bulk RNA-sequencing and ELISA. We found a massive expansion of neutrophils in PBMCs of HAGC. These neutrophils are activated, but immature. Besides, mononuclear phagocytes exhibited an M2-like signature and T cells were suppressed and reduced in number. Analysis of cell-cell crosstalk revealed that several signalling pathways involved in neutrophil to T-cell suppression including APP-CD74, MIF-(CD74+CXCR2), and MIF-(CD74+CD44) pathways were increased in HAGC. NETosis-associated genes S100A8 and S100A9 as well as VEGF, PDGF, FGF, and NOTCH signalling that contribute to DIC development were upregulated in HAGC too. This study reveals significant changes in the distribution and interactions of the PBMC subsets and provides valuable insight into the immune response in patients with HAGC. S100A8 and S100A9 are highly expressed in HAGC neutrophils, suggesting their potential to be used as novel diagnostic and therapeutic targets for HAGC.


Asunto(s)
Leucocitos Mononucleares , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/sangre , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Masculino , Femenino , Persona de Mediana Edad , Transducción de Señal , Anciano , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
J Glob Health ; 14: 05011, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271211

RESUMEN

Background: With the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in schools and communities, clinical evidence is needed to determine the impact of the pandemic and public health interventions under the zero coronavirus disease policy on the occurrence of common infectious diseases and non-infectious diseases among children. Methods: The current study was designed to analyse the occurrence of common infectious diseases before and after the pandemic outbreak in southern China. Data was obtained for 1 801 728 patients admitted into children's hospitals in Guangzhou between January 2017 and July 2022. Regression analysis was performed for data analysis. Results: The annual occurrence of common paediatric infectious diseases remarkably decreased after the pandemic compared to the baseline before the pandemic and the monthly occurrence. Cases per month of common paediatric infectious diseases were significantly lower in five periods during the local outbreak when enhanced public health measures were in place. Cases of acute non-infectious diseases such as bone fractures were not reduced. Non-pharmaceutical interventions decreased annual and monthly cases of paediatric respiratory and intestinal infections during the coronavirus disease 2019 (COVID-19) pandemic, especially when enhanced public health interventions were in place. Conclusions: Our findings provide clinical evidence that public health interventions under the dynamic zero COVID policy in the past three years had significant impacts on the occurrence of common respiratory and intestinal infectious diseases among children and adolescents but little impact on reducing non-infectious diseases such as leukaemia and bone fracture.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades no Transmisibles , Adolescente , Humanos , Niño , COVID-19/epidemiología , SARS-CoV-2 , Salud Pública , Políticas , China/epidemiología
6.
J Transl Med ; 22(1): 122, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297333

RESUMEN

BACKGROUND: Emerging evidence suggests that Rho GTPases play a crucial role in tumorigenesis and metastasis, but their involvement in the tumor microenvironment (TME) and prognosis of hepatocellular carcinoma (HCC) is not well understood. METHODS: We aim to develop a tumor prognosis prediction system called the Rho GTPases-related gene score (RGPRG score) using Rho GTPase signaling genes and further bioinformatic analyses. RESULTS: Our work found that HCC patients with a high RGPRG score had significantly worse survival and increased immunosuppressive cell fractions compared to those with a low RGPRG score. Single-cell cohort analysis revealed an immune-active TME in patients with a low RGPRG score, with strengthened communication from T/NK cells to other cells through MIF signaling networks. Targeting these alterations in TME, the patients with high RGPRG score have worse immunotherapeutic outcomes and decreased survival time in the immunotherapy cohort. Moreover, the RGPRG score was found to be correlated with survival in 27 other cancers. In vitro experiments confirmed that knockdown of the key Rho GTPase-signaling biomarker SFN significantly inhibited HCC cell proliferation, invasion, and migration. CONCLUSIONS: This study provides new insight into the TME features and clinical use of Rho GTPase gene pattern at the bulk-seq and single-cell level, which may contribute to guiding personalized treatment and improving clinical outcome in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogénesis , Línea Celular , Inmunosupresores , Proteínas de Unión al GTP rho , Microambiente Tumoral
7.
Med Res Rev ; 44(3): 919-938, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38095832

RESUMEN

Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Diferenciación Celular , Células Madre , Proliferación Celular
8.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065706

RESUMEN

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Asunto(s)
Antígeno B7-H1 , Inmunomodulación , Células Madre Mesenquimatosas , Humanos , Antígeno B7-H1/metabolismo , Células Madre Mesenquimatosas/inmunología , Linfocitos T/metabolismo
9.
World J Stem Cells ; 15(8): 787-806, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37700823

RESUMEN

BACKGROUND: The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear. AIM: To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis. METHODS: We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis. RESULTS: Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice. CONCLUSION: Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.

10.
Stem Cell Rev Rep ; 19(7): 2481-2496, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37535186

RESUMEN

BACKGROUND: Protection of cardiac function following myocardial infarction was largely enhanced by bradykinin-pretreated cardiac-specific c-kit+ (BK-c-kit+) cells, even without significant engraftment, indicating that paracrine actions of BK-c-kit+ cells play a pivotal role in angiogenesis. Nevertheless, the active components of the paracrine actions of BK-c-kit+ cells and the underlying mechanisms remain unknown. This study aimed to define the active components of exosomes from BK-c-kit+ cells and elucidate their underlying protective mechanisms. METHODS: Matrigel tube formation assay, cell cycle, and mobility in human umbilical vein endothelial cells (HUVECs) and hindlimb ischemia (HLI) in mice were applied to determine the angiogenic effect of condition medium (CM) and exosomes. Proteome profiler, microRNA sponge, Due-luciferase assay, microRNA-sequencing, qRT-PCR, and Western blot were used to determine the underlying mechanism of the angiogenic effect of exosomes from BK-c-kit+. RESULTS: As a result, BK-c-kit+ CM and exosomes promoted tube formation in HUVECs and the repair of HLI in mice. Angiogenesis-related proteomic profiling and microRNA sequencing revealed highly enriched miR-3059-5p as a key angiogenic component of BK-c-kit+ exosomes. Meanwhile, loss- and gain-of-function experiments revealed that the promotion of angiogenesis by miR-3059-5p was mainly through suppression of TNFSF15-inhibited effects on vascular tube formation, cell proliferation and cell migration. Moreover, enhanced angiogenesis of miR-3059-5p-inhibited TNFSF15 has been associated with Akt/Erk1/2/Smad2/3-modulated signaling pathway. CONCLUSION: Our results demonstrated a novel finding that BK-c-kit+ cells enrich exosomal miR-3059-5p to suppress TNFSF15 and promote angiogenesis against hindlimb ischemia in mice.


Asunto(s)
Bradiquinina , MicroARNs , Humanos , Ratones , Animales , Bradiquinina/metabolismo , Proteómica , Neovascularización Fisiológica/genética , MicroARNs/genética , MicroARNs/metabolismo , Isquemia/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Miembro Posterior/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
11.
Life Sci Alliance ; 5(12)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36260750

RESUMEN

The immunosuppressive function "licensed" by IFN-γ is a vital attribute of mesenchymal stem cells (MSCs) widely used in the treatment of inflammatory diseases. However, the mechanism and impact of metabolic reprogramming on MSC immunomodulatory plasticity remain unclear. Here, we explored the mechanism by which glucose metabolism affects the immunomodulatory reprogramming of MSCs "licensed" by IFN-γ. Our data showed that glucose metabolism regulates the immunosuppressive function of human umbilical cord MSCs (hUC-MSCs) challenged by IFN-γ through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Furthermore, ATP facilitated the cross talk between glucose metabolism and the JAK-STAT system, which stimulates the phosphorylation of JAK2 and STATs, as well as the expression of indoleamine 2, 3-dioxygenase and programmed cell death-1 ligand. Moreover, ATP synergistically enhanced the therapeutic efficacy of IFN-γ-primed hUC-MSCs against acute pneumonia in mice. These results indicate a novel cross talk between the immunosuppressive function, glucose metabolism, and mitochondrial oxidation and provide a novel targeting strategy to enhance the therapeutic efficacies of hUC-MSCs.


Asunto(s)
Dioxigenasas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Ligandos , Células Madre Mesenquimatosas/metabolismo , Interferón gamma/metabolismo , Terapia de Inmunosupresión , Quinasas Janus/metabolismo , Dioxigenasas/metabolismo , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo
12.
Circulation ; 146(20): 1537-1557, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134579

RESUMEN

BACKGROUND: Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS: The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective ß-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS: Treadmill exercise markedly induced cardiac expression of ß-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of ß-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS: The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03240978.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Células Madre Pluripotentes Inducidas , Sirtuina 3 , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lípidos , Ratones Noqueados , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuina 3/metabolismo
13.
Stem Cell Res Ther ; 13(1): 451, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064461

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU) is a serious chronic complication of diabetes mellitus that contributes to 85% of nontraumatic lower extremity amputations in diabetic patients. Preliminary clinical benefits have been shown in treatments based on mesenchymal stem cells for patients with DFU or peripheral arterial disease (PAD). However, the long-term safety and benefits are unclear for patients with both DFU and PAD who are not amenable to surgical revascularization. METHODS: In this phase I pilot study, 14 patients with PAD and incurable DFU were enrolled to assess the safety and efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) administration based on conservative treatments. All patients received topical and intravenous administrations of hUC-MSCs at a dosage of 2 × 105 cells/kg with an upper limit of 1 × 107 cells for each dose. The adverse events during treatment and follow-up were documented for safety assessments. The therapeutic efficacy was assessed by ulcer healing status, recurrence rate, and 3-year amputation-free rate in the follow-up phase. RESULTS: The safety profiles were favorable. Only 2 cases of transient fever were observed within 3 days after transfusion and considered possibly related to hUC-MSC administration intravenously. Ulcer disclosure was achieved for more than 95% of the lesion area for all patients within 1.5 months after treatment. The symptoms of chronic limb ischaemia were alleviated along with a decrease in Wagner scores, Rutherford grades, and visual analogue scale scores. No direct evidence was observed to indicate the alleviation of the obstruction in the main vessels of target limbs based on computed tomography angiography. The duration of rehospitalization for DFU was 2.0 ± 0.6 years. All of the patients survived without amputation due to the recurrence of DFU within 3 years after treatments. CONCLUSIONS: Based on the current pilot study, the preliminary clinical benefits of hUC-MSCs on DFU healing were shown, including good tolerance, a shortened healing time to 1.5 months and a favorable 3-year amputation-free survival rate. The clinical evidence in the current study suggested a further phase I/II study with a larger patient population and a more rigorous design to explore the efficacy and mechanism of hUC-MSCs on DFU healing. TRIAL REGISTRATION: The current study was registered retrospectively on 22 Jan 2022 with the Chinese Clinical Trial Registry (ChiCTR2200055885), http://www.chictr.org.cn/showproj.aspx?proj=135888.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Células Madre Mesenquimatosas , Enfermedad Arterial Periférica , Administración Intravenosa , Pie Diabético/terapia , Estudios de Seguimiento , Humanos , Enfermedad Arterial Periférica/terapia , Proyectos Piloto , Estudios Retrospectivos , Cordón Umbilical
14.
Cell Death Dis ; 13(7): 580, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787632

RESUMEN

Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunomodulación
15.
BMC Genom Data ; 23(1): 51, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794546

RESUMEN

BACKGROUND: Colon adenocarcinoma (COAD) is one of the leading causes of death worldwide. Cancer stem cells (CSCs) are vital for COAD chemoresistance and recurrence, however little is known about stem cell-related biomarkers in drug resistance and COAD prognosis prediction. METHODS: To uncover the roles of CSC in COAD tumorigenesis, chemoresistance, and prognosis, we retrieved COAD patients' RNAseq data from TCGA (The Cancer Genome Atlas). We further performed analysis of differentially expressed genes (DEGs) and mRNA expression-based stemness index (mRNAsi) to identify stemness-related COAD biomarkers. We then evaluated the roles of mRNAsi in tumorigenesis, clinical-stage, overall survival (OS), and chemoresistance. Afterward, we used identified prognostic stemness-related genes (PSRGs) to construct a prediction model. After constructing the prediction model, we used elastic Net regression and area under the curve (AUC) to explore the prediction value of PSRGs based on risk scores and the receiver operator characteristic (ROC) curve. To elucidate the underlying interconnected systems, we examined relationships between the levels of TFs, PSRGs, and 50 cancer hallmarks by a Pearson correlation analysis. RESULTS: Twelve thousand one hundred eight DEGs were identified by comparing 456 primary COADs and 41 normal solid tissue samples. Furthermore, we identified 4351 clinical stage-related DEGs, 16,516 stemness-associated DEGs, and 54 chemoresistance-related DEGs from cancer stages: mRNAsi, and COAD chemoresistance. Compared to normal tissue samples, mRNAsi in COAD patients were marked on an elevation and involved in prognosis (p = 0.027), stemness-related DEGs based on chemoresistance (OR = 3.28, p ≤ 0.001) and AJCC clinical stage relating (OR = 4.02, p ≤ 0.001) to COAD patients. The prediction model of prognosis were constructed using the 6 PSRGs with high accuracy (AUC: 0.659). The model identified universal correlation between NRIP2 and FDFT1 (key PRSGs), and some cancer related transcription factors (TFs) and trademarks of cancer gene were in the regulatory network. CONCLUSION: We found that mRNAsi is a reliable predictive biomarker of tumorigenesis and COAD prognosis. Our established prediction model of COAD chemoresistance, which includes the six PSRGs, is effective, as the model provides promising therapeutic targets in the COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Adenocarcinoma/tratamiento farmacológico , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Medicamentos , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
16.
Nat Metab ; 4(5): 608-626, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551509

RESUMEN

Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that ß-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic ß-cells independent of the actions of FGF21. ß-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in ß-cells and represents a promising therapeutic target for diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Glucosa/metabolismo , Glucólisis , Secreción de Insulina , Ratones
17.
Cancers (Basel) ; 14(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35406470

RESUMEN

Exosomes are crucial extracellular vesicles (EVs) with a diameter of approximately 30-200 nm. They are released by most cell types in their extracellular milieu and carry various biomolecules, including proteins and nucleic acids. Exosomes are increasingly studied in various diseases, including cancer, due to their role in local and distant cell-cell communication in which they can promote tumor growth, cancer progression, and metastasis. Interestingly, a tremendous number of exosomes is released by malignant cancer cells, and these are then taken up by autologous and heterologous recipient stromal cells such as immune cells, cancer stem cells, and endothelial cells. All these events demand an enormous amount of energy and require that exosomes remain stable while having the capacity to reach distant sites and cross physical barriers. Nevertheless, there is a dearth of research pertaining to the energy sources of exosomes, and questions remain about how they maintain their motility in the tumor microenvironment (TME) and beyond. Moreover, exosomes can produce adenosine triphosphate (ATP), an important energy molecule required by all cells, and mitochondria have been identified as one of the exosomal cargoes. These findings strengthen the prospect of exosomal communication via transfer of mitochondria and the bioenergetics of target recipient cells. In the TME, the accumulation of ATP and lactate may facilitate the entry of exosomes into cancer cells to promote metastasis, as well as help to target cancer cells at the tumor site. This review highlights how exosomes obtain sufficient energy to thrive in the TME and communicate with distant physiological destinations.

18.
Nat Commun ; 13(1): 2028, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440562

RESUMEN

Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19), with macrophages as one of the main cell types involved. It is urgent to understand the interactions among permissive cells, macrophages, and the SARS-CoV-2 virus, thereby offering important insights into effective therapeutic strategies. Here, we establish a lung and macrophage co-culture system derived from human pluripotent stem cells (hPSCs), modeling the host-pathogen interaction in SARS-CoV-2 infection. We find that both classically polarized macrophages (M1) and alternatively polarized macrophages (M2) have inhibitory effects on SARS-CoV-2 infection. However, M1 and non-activated (M0) macrophages, but not M2 macrophages, significantly up-regulate inflammatory factors upon viral infection. Moreover, M1 macrophages suppress the growth and enhance apoptosis of lung cells. Inhibition of viral entry using an ACE2 blocking antibody substantially enhances the activity of M2 macrophages. Our studies indicate differential immune response patterns in distinct macrophage phenotypes, which could lead to a range of COVID-19 disease severity.


Asunto(s)
COVID-19 , Células Madre Pluripotentes , Humanos , Pulmón , Macrófagos , SARS-CoV-2
19.
Front Immunol ; 13: 1096587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685554

RESUMEN

Introduction: Crohn's disease is characterized of dysregulated inflammatory and immune reactions. The role of the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome in Crohn's disease remains largely unknown. Methods: The microarray-based transcriptomic data and corresponding clinical information of GSE100833 and GSE16879 were obtained from the Gene Expression Omnibus (GEO) database. Identification of in the NLRP3 inflammasome-related genes and construction of LASSO regression model. Immune landscape analysis was evaluated with ssGSEA. Classification of Crohn's-disease samples based on NLRP3 inflammasome-related genes with ConsensusClusterPlus. Functional enrichment analysis, gene set variation analysis (GSVA) and drug-gene interaction network. Results: The expressions of NLRP3 inflammasome-related genes were increased in diseased tissues, and higher expressions of NLRP3 inflammasome-related genes were correlated with generally enhanced immune cell infiltration, immune-related pathways and human leukocyte antigen (HLA)-gene expressions. The gene-based signature showed well performance in the diagnosis of Crohn's disease. Moreover, consensus clustering identified two Crohn's disease clusters based on NLRP3 inflammasome-related genes, and cluster 2 was with higher expressions of the genes. Cluster 2 demonstrated upregulated activities of immune environment in Crohn's disease. Furthermore, four key hub genes were identified and potential drugs were explored for the treatment of Crohn's disease. Conclusions: Our findings indicate that NLRP3 inflammasome and its related genes could regulate immune cells and responses, as well as involve in the pathogenesis of Crohn's disease from transcriptomic aspects. These findings provide in silico insights into the diagnosis and treatment of Crohn's disease and might assist in the clinical decision-making process.


Asunto(s)
Enfermedad de Crohn , Inflamasomas , Humanos , Inflamasomas/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
20.
Front Pharmacol ; 13: 1096055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712672

RESUMEN

Background: Gastric cancer (GC) is a multifactorial progressive disease with high mortality and heterogeneous prognosis. Effective prognostic biomarkers for GC were critically needed. Hippo signaling pathway is one of the critical mechanisms regulating the occurrence and development of GC, and has potential clinical application value for the prognosis and treatment of GC patients. However, there is no effective signature based on Hippo signaling pathway-related genes (HSPRGs) to predict the prognosis and treatment response of GC patients. Our study aimed to build a HSPRGs signature and explore its performance in improving prognostic assessment and drug therapeutic response in GC. Methods: Based on gene expression profiles obtained from The Cancer Genome Atlas (TCGA) database, we identified differentially expressed HSPRGs and conducted univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a multigene risk signature. Subsequently, the Kaplan-Meier curve and receiver operating characteristic (ROC) were performed to evaluate the predictive value of the risk signature in both training and validation cohort. Furthermore, we carried out univariate and multivariate Cox regression analysis to investigate the independent prognostic factors and establish a predictive nomogram. The enriched signaling pathways in risk signature were analyzed by gene set enrichment analysis (GSEA). Tumor immune dysfunction and exclusion (TIDE) and drug sensitivity analysis were performed to depict therapeutic response in GC. Results: In total, 38 differentially expressed HSPRGs were identified, and final four genes (DLG3, TGFB3, TGFBR1, FZD6) were incorporated to build the signature. The ROC curve with average 1-, 3-, and 5-year areas under the curve (AUC) equal to .609, .634, and .639. Clinical ROC curve revealed that risk signature was superior to other clinicopathological factors in predicting prognosis. Calibration curves and C-index (.655) of nomogram showed excellent consistency. Besides, in the immunotherapy analysis, exclusion (p < 2.22 × 10-16) and microsatellite instability (p = .0058) performed significantly differences. Finally, our results suggested that patients in the high-risk group were more sensitive to specific chemotherapeutic agents. Conclusion: Results support the hypothesis that Hippo-related signature is a novel prognostic biomarker and predictor, which could help optimize GC prognostic stratification and inform clinical medication decisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA