Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
2.
Life Sci ; 345: 122577, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38521387

RESUMEN

BACKGROUND: Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS: The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS: Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE: TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.


Asunto(s)
Hipotiroidismo , Hormonas Tiroideas , Tirotropina , Animales , Ratones , Hipotiroidismo/complicaciones , Hipotiroidismo/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Intestinos/patología
3.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958953

RESUMEN

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Porcinos , Animales , Virus de la Gastroenteritis Transmisible/genética , Gastroenteritis Porcina Transmisible/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/farmacología , Citocinas/genética , Citocinas/farmacología , Interleucina-12/farmacología
4.
Obesity (Silver Spring) ; 30(11): 2242-2255, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321273

RESUMEN

OBJECTIVE: Elevation of energy expenditure through an increase of brown adipose tissue (BAT) thermogenesis is regarded as one of the most promising ways to prevent obesity development. The preoptic area (POA) of the hypothalamus is a critical area for control of BAT thermogenesis. However, the intracellular signaling cascades in the POA for regulation of BAT thermogenesis are poorly understood. METHODS: Phosphorylation proteomics (phosphoproteomics) and bioinformatics approaches were used to disclose numerous hypothalamic signaling pathways involved in the regulation of BAT thermogenesis. Conditional manipulation of the p38α gene in mouse POA was performed by stereotaxic injection of adeno-associated virus 9 vector to explore the role of p38α in BAT thermogenesis. RESULTS: Multiple hypothalamic signaling pathways were triggered by cold exposure, especially the mitogen-activated protein kinase (MAPK) signaling pathway. The p38α activation, but not extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK), in the hypothalamus was significantly decreased during cold exposure. p38α deficiency in the POA dramatically elevated energy expenditure owing to a marked increase in BAT thermogenesis, resulting in significantly decreased body weight gain and fat mass. Overexpression of p38α in the POA led to a dramatic increase in weight gain. CONCLUSIONS: These results demonstrate that p38α in the POA exacerbates obesity development, at least in part owing to a decrease in BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Área Preóptica , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Área Preóptica/metabolismo , Termogénesis/fisiología , Obesidad/metabolismo , Metabolismo Energético/fisiología , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA