Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 98(8): 4498-503, 2001 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11287649

RESUMEN

Failures to arrest growth in response to senescence or transforming growth factor beta (TGF-beta) are key derangements associated with carcinoma progression. We report that activation of telomerase activity may overcome both inhibitory pathways. Ectopic expression of the human telomerase catalytic subunit, hTERT, in cultured human mammary epithelial cells (HMEC) lacking both telomerase activity and p16(INK4A) resulted in gaining the ability to maintain indefinite growth in the absence and presence of TGF-beta. The ability to maintain growth in TGF-beta was independent of telomere length and required catalytically active telomerase capable of telomere maintenance in vivo. The capacity of ectopic hTERT to induce TGF-beta resistance may explain our previously described gain of TGF-beta resistance after reactivation of endogenous telomerase activity in rare carcinogen-treated HMEC. In those HMEC that overcame senescence, both telomerase activity and TGF-beta resistance were acquired gradually during a process we have termed conversion. This effect of hTERT may model a key change occurring during in vivo human breast carcinogenesis.


Asunto(s)
Mama/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ARN , Telomerasa/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Western Blotting , Mama/citología , Dominio Catalítico , División Celular/efectos de los fármacos , Línea Celular Transformada , Proteínas de Unión al ADN , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Inmunohistoquímica , Telomerasa/química , Telómero
2.
Gene Ther ; 8(7): 568-78, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11319624

RESUMEN

In human cells, telomerase activity is regulated by transcriptional control of the telomerase reverse transcriptase gene (hTERT) whose product is the catalytic subunit of the enzyme. The hTERT promoter is active in virtually all types of tumors and immortal cells, but is silent in most adult somatic tissues. In this study, we placed the herpes simplex virus thymidine kinase gene under the control of the hTERT promoter with the aim of restricting its expression to tumor cells. In transfection experiments, the hTERT promoter driven thymidine kinase gene (hTERTp/TK) conferred ganciclovir sensitivity to all tumor and immortal cell lines tested, whereas normal somatic cells remained largely unaffected. Human hTERTp/TK-positive cancer cells implanted in nude mice developed into tumors that could be eradicated by ganciclovir treatment. The hTERTp/TK cassette was inserted into an adenovirus vector and its efficacy in reducing tumor growth was compared with that of an adenovirus carrying the thymidine kinase gene under the control of the cytomegalovirus immediate-early promoter (CMVp/TK). In a xenograft model using the human 143B osteosarcoma cell line, a single injection of either virus resulted in equivalent tumor regression and survival upon ganciclovir treatment. In animals injected intratumorally with the CMVp/TK adenovirus, expression of the thymidine kinase gene was detected in tumors, as well as in liver samples. Expression of the suicide gene in combination with ganciclovir resulted in severe liver histopathology and in an elevation of hepatic enzymes. In sharp contrast, when the hTERT promoter controlled the thymidine kinase gene, transgene expression was observed in tumors, but not in liver samples. Normal liver function in these animals was confirmed by serum levels of hepatic enzymes that were indistinguishable from those of control healthy mice. These results indicate that by restricting thymidine kinase expression to tumor cells, the hTERT promoter allows the tumoricidal effect of the suicidal gene to be exerted without detrimental consequences on healthy tissues and vital organs. The tight specificity of expression imparted by the hTERT promoter will assist the development of novel approaches to the treatment of a broad array of cancer types.


Asunto(s)
Terapia Genética/métodos , Hepatopatías/prevención & control , Osteosarcoma/terapia , Regiones Promotoras Genéticas , ARN , Telomerasa/genética , Adenoviridae/genética , Animales , Proteínas de Unión al ADN , Ganciclovir/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Terapia Genética/efectos adversos , Vectores Genéticos/uso terapéutico , Humanos , Hepatopatías/etiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Osteosarcoma/genética , Osteosarcoma/patología , ARN Mensajero/genética , Tasa de Supervivencia , Timidina Quinasa/genética , Trasplante Heterólogo , Células Tumorales Cultivadas
3.
Cancer Res ; 60(8): 2116-21, 2000 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-10786671

RESUMEN

Telomerase, an enzymatic activity responsible for the replication of chromosome end structures, is strongly upregulated in most human cancers. In contrast, most differentiated tissues are telomerase negative. The rate-limiting step for telomerase activity seems to be the expression of the catalytic subunit of the enzyme, encoded by the human telomerase reverse transcriptase (hTERT) gene. The precise mechanism of how hTERT is regulated has not been elucidated yet. We show here that the down-regulation of hTERT mRNA during 12-O-tetradecanoylphorbol-13-acetate-induced differentiation of human U937 cells is a consequence of a fast decrease in the rate of transcription rather than changes in its half-life. The only transcription factor that has so far been implicated in the regulation of hTERT expression is the c-Myc oncoprotein. Our analysis shows that another member of the myc/marx/mad network, mad1, encoding a transcriptional repressor that is significantly increased by 12-O-tetra-decanoylphorbol-13-acetate treatment, represses hTERT promoter-driven reporter gene activity in transient transfection assays. This effect is dependent on the NH2 terminal domain of Madl, which mediates the association with the transcriptional corepressor mSin3. Our findings suggest the involvement of an additional transcription factor in the regulation of hTERT expression and may provide a model for how hTERT activity is controlled during the differentiation process in human somatic tissues.


Asunto(s)
Dominio Catalítico/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , ARN , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Telomerasa/genética , Transcripción Genética/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Semivida , Histona Desacetilasas , Humanos , Cinética , Neoplasias/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Elementos de Respuesta/genética , Eliminación de Secuencia/genética , Telomerasa/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transfección , Tretinoina/farmacología , Células U937
4.
Oncogene ; 18(5): 1219-26, 1999 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-10022128

RESUMEN

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transformación Celular Neoplásica , Isomerasa de Peptidilprolil , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , ADN Polimerasa Dirigida por ARN/biosíntesis , ARN , Telomerasa/biosíntesis , Animales , Secuencia de Bases , Secuencia Conservada , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas/genética , ADN Polimerasa Dirigida por ARN/genética , Ratas , Homología de Secuencia de Ácido Nucleico , Telomerasa/genética , Transcripción Genética
5.
Ann N Y Acad Sci ; 886: 1-11, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10667198

RESUMEN

Telomerase is absent in most normal tissues, but is abnormally reactivated in all major cancer types. Telomerase enables tumor cells to maintain telomere length, allowing indefinite replicative capacity. Albeit not sufficient in itself to induce neoplasia, telomerase is believed to be necessary for cancer cells to grow without limit. The presence of telomerase has been detected in virtually all cancer types including the most prevalent cancers of the prostate, breast, lung, colon, bladder, uterus, ovary, and pancreas as well as in lymphomas, leukemias, and melanomas. In addition, data from cancer patients indicate that telomerase levels correlate with clinical outcome in neuroblastomas, leukemias, and prostate, gastric, and breast cancers. Studies using an antisense to the human telomerase RNA component demonstrate that telomerase in human tumor lines can be blocked ex vivo. In these experiments, telomerase inhibition led to telomere shortening and cancer cell death, validating telomerase as a target for anticancer therapy. Telomerase is a uniquely appealing target for drug discovery because its dichotomic expression in normal versus cancer cells suggests that no serious side effects would result from a treatment abrogating telomerase activity. A variety of approaches to telomerase inhibition are being investigated and are discussed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Neoplasias/enzimología , Telomerasa/antagonistas & inhibidores , Humanos
6.
Science ; 279(5349): 349-52, 1998 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-9454332

RESUMEN

Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.


Asunto(s)
División Celular , Senescencia Celular , Proteínas/metabolismo , ARN , Telomerasa/metabolismo , Telómero/fisiología , Biomarcadores , Catálisis , Línea Celular , Transformación Celular Neoplásica , Clonación Molecular , Proteínas de Unión al ADN , Fibroblastos/citología , Homeostasis , Humanos , Cariotipificación , Fenotipo , Epitelio Pigmentado Ocular/citología , Proteínas/genética , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Células Madre/citología , Células Madre/enzimología , Telomerasa/genética , Telómero/metabolismo , Telómero/ultraestructura , Transfección , Células Tumorales Cultivadas , beta-Galactosidasa/metabolismo
7.
Nat Genet ; 17(4): 498-502, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9398860

RESUMEN

The maintenance of chromosome termini, or telomeres, requires the action of the enzyme telomerase, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. Telomerase is expressed and telomere length is maintained in human germ cells and the great majority of primary human tumours. However, telomerase is not detectable in most normal somatic cells; this corresponds to the gradual telomere loss observed with each cell division. It has been proposed that telomere erosion eventually signals entry into senescence or cell crisis and that activation of telomerase is usually required for immortal cell proliferation. In addition to the human telomerase RNA component (hTR; ref. 11), TR1/TLP1 (refs 12, 13), a protein that is homologous to the p80 protein associated with the Tetrahymena enzyme, has been identified in humans. More recently, the human telomerase reverse transcriptase (hTRT; refs 15, 16), which is homologous to the reverse transcriptase (RT)-like proteins associated with the Euplotes aediculatus (Ea_p123), Saccharomyces cerevisiae (Est2p) and Schizosaccharomyces pombe (5pTrt1) telomerases, has been reported to be a telomerase protein subunit. A catalytic function has been demonstrated for Est2p in the RT-like class but not for p80 or its homologues. We now report that in vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme. Single amino-acid changes in conserved telomerase-specific and RT motifs reduce or abolish activity, providing direct evidence that hTRT is the catalytic protein component of telomerase. Normal human diploid cells transiently expressing hTRT possessed telomerase activity, demonstrating that hTRT is the limiting component necessary for restoration of telomerase activity in these cells. The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis.


Asunto(s)
ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , ARN/metabolismo , Telomerasa/genética , Secuencia de Aminoácidos , Animales , Catálisis , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN/biosíntesis , ARN/genética , ADN Polimerasa Dirigida por ARN/biosíntesis , Conejos , Alineación de Secuencia , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA