Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell Death Dis ; 14(8): 549, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620309

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.


Asunto(s)
Carcinoma Hepatocelular , Ciclina E , Cirrosis Hepática , Neoplasias Hepáticas , Animales , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Células Estrelladas Hepáticas , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Ciclina E/genética
2.
Front Immunol ; 14: 1154416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063827

RESUMEN

Mast cells (MCs) are immune cells of the myeloid lineage distributed in tissues throughout the body. Phenotypically, they are a heterogeneous group characterized by different protease repertoires stored in secretory granules and differential presence of receptors. To adequately address aspects of MC biology either primary MCs isolated from human or mouse tissue or different human MC lines, like HMC-1.1 and -1.2, or rodent MC lines like L138.8A or RBL-2H3 are frequently used. Nevertheless, cellular systems to study MC functions are very limited. We have generated a murine connective tissue-like MC line, termed PMC-306, derived from primary peritoneal MCs (PMCs), which spontaneously transformed. We analyzed PMC-306 cells regarding MC surface receptor expression, effector functions and respective signaling pathways, and found that the cells reacted very similar to primary wildtype (WT) PMCs. In this regard, stimulation with MAS-related G-protein-coupled receptor member B2 (MRGPRB2) ligands induced respective signaling and effector functions. Furthermore, PMC-306 cells revealed significantly accelerated cell cycle progression, which however was still dependent on interleukine 3 (IL-3) and stem cell factor (SCF). Phenotypically, PMC-306 cells adopted an immature connective tissue-like MCs appearance. The observation of cellular transformation was accompanied by the loss of Cdkn2a and Arf expression, which are both described as critical cell cycle regulators. The loss of Cdkn2a and Arf expression could be mimicked in primary bone marrow-derived mast cells (BMMCs) by sustained SCF supplementation strongly arguing for an involvement of KIT activation in the regulation of Cdkn2a/Arf expression. Hence, this new cell line might be a useful tool to study further aspects of PMC function and to address tumorigenic processes associated with MC leukemia.


Asunto(s)
Mastocitos , Peritoneo , Animales , Humanos , Ratones , Línea Celular , Tejido Conectivo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Factor de Células Madre/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factores de Ribosilacion-ADP/metabolismo
3.
Cancers (Basel) ; 13(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830835

RESUMEN

Cyclin E1 (CCNE1) is a regulatory subunit of Cyclin-dependent kinase 2 (CDK2) and is thought to control the transition of quiescent cells into cell cycle progression. Recently, we identified CCNE1 and CDK2 as key factors for the initiation of hepatocellular carcinoma (HCC). In the present study, we dissected the contributions of CCNE1 and CDK2 for HCC progression in mice and patients. Therefore, we generated genetically modified mice allowing inducible deletion of Ccne1 or Cdk2. After initiation of HCC, using the hepatocarcinogen diethylnitrosamine (DEN), we deleted Ccne1 or Cdk2 and subsequently analysed HCC progression. The relevance of CCNE1 or CDK2 for human HCC progression was investigated by in silico database analysis. Interventional deletion of Ccne1, but not of Cdk2, substantially reduced the HCC burden in mice. Ccne1-deficient HCCs were characterised by attenuated proliferation, impaired DNA damage response and downregulation of markers for stemness and microinvasion. Additionally, the tumour microenvironment of Ccne1-deficient mice showed a reduction in immune mediators, myeloid cells and cancer-associated fibroblasts. In sharp contrast, Cdk2 was dispensable for HCC progression in mice. In agreement with our mouse data, CCNE1 was overexpressed in HCC patients independent of risk factors, and associated with reduced disease-free survival, a common signature for enhanced chromosomal instability, proliferation, dedifferentiation and invasion. However, CDK2 lacked diagnostic or prognostic value in HCC patients. In summary, CCNE1 drives HCC progression in a CDK2-independent manner in mice and man. Therefore, interventional inactivation of CCNE1 represents a promising strategy the treatment of liver cancer.

4.
Mediators Inflamm ; 2021: 6665028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814981

RESUMEN

Acute and chronic liver inflammation is driven by cytokine and chemokine release from various cell types in the liver. Here, we report that the induction of inflammatory mediators is associated with a yet undescribed upregulation of the metalloproteinase ADAM8 in different murine hepatitis models. We further show the importance of ADAM8 expression for the production of inflammatory mediators in cultured liver cells. As a model of acute inflammation, we investigated liver tissue from lipopolysaccharide- (LPS-) treated mice in which ADAM8 expression was markedly upregulated compared to control mice. In vitro, stimulation with LPS enhanced ADAM8 expression in murine and human endothelial and hepatoma cell lines as well as in primary murine hepatocytes. The enhanced ADAM8 expression was associated with an upregulation of TNF-α and IL-6 expression and release. Inhibition studies indicate that the cytokine response of hepatoma cells to LPS depends on the activity of ADAM8 and that signalling by TNF-α can contribute to these ADAM8-dependent effects. The role of ADAM8 was further confirmed with primary hepatocytes from ADAM8 knockout mice in which TNF-α and IL-6 induction and release were considerably attenuated. As a model of chronic liver injury, we studied liver tissue from mice undergoing high-fat diet-induced steatohepatitis and again observed upregulation of ADAM8 mRNA expression compared to healthy controls. In vitro, ADAM8 expression was upregulated in hepatoma, endothelial, and stellate cell lines by various mediators of steatohepatitis including fatty acid (linoleic-oleic acid), IL-1ß, TNF-α, IFN-γ, and TGF-ß. Upregulation of ADAM8 was associated with the induction and release of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CX3CL1). Finally, knockdown of ADAM8 expression in all tested cell types attenuated the release of these mediators. Thus, ADAM8 is upregulated in acute and chronic liver inflammation and is able to promote inflammation by enhancing expression and release of inflammatory mediators.


Asunto(s)
Proteínas ADAM , Antígenos CD , Citocinas , Hepatitis , Proteínas de la Membrana , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Citocinas/metabolismo , Hepatitis/metabolismo , Inflamación/metabolismo , Macrófagos del Hígado/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Cell Mol Med ; 25(4): 1982-1999, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33314720

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common metastatic tumours. Tumour growth and metastasis depend on the induction of cell proliferation and migration by various mediators. Here, we report that the A Disintegrin and Metalloproteinase (ADAM) 8 is highly expressed in murine HCC tissues as well as in murine and human hepatoma cell lines Hepa1-6 and HepG2, respectively. To establish a dose-dependent role of different ADAM8 expression levels for HCC progression, ADAM8 expression was either reduced via shRNA- or siRNA-mediated knockdown or increased by using a retroviral overexpression vector. These two complementary approaches revealed that ADAM8 expression levels correlated positively with proliferation, clonogenicity, migration and matrix invasion and negatively with apoptosis of hepatoma cells. Furthermore, the analysis of pro-migratory and proliferative signalling pathways revealed that ADAM8 expression level was positively associated with expression of ß1 integrin as well as with the activation of focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), Src kinase and Rho A GTPase. Finally, up-regulation of promigatory signalling and cell migration was also seen with a proteolytically inactive ADAM8 mutant. These findings reveal that ADAM8 is critically up-regulated in hepatoma cells contributes to cell proliferation and survival and furthermore induces pro-migratory signalling pathways independently of its proteolytic activity. By this, ADAM8 can promote cell functions most relevant for HCC growth and metastasis.


Asunto(s)
Proteínas ADAM/genética , Antígenos CD/genética , Biomarcadores de Tumor , Expresión Génica , Proteínas de la Membrana/genética , Transducción de Señal , Proteínas ADAM/metabolismo , Animales , Antígenos CD/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Inmunohistoquímica , Integrina beta1/genética , Integrina beta1/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Proteolisis , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo
6.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008356

RESUMEN

BACKGROUND: Metabolic-associated fatty liver disease (MAFLD) has risen as one of the leading etiologies for hepatocellular carcinoma (HCC). Oncogenes have been suggested to be responsible for the high risk of MAFLD-related HCC. We analyzed the impact of the proto-oncogene c-MYC in the development of human and murine MAFLD and MAFLD-associated HCC. METHODS: alb-myctg mice were studied at baseline conditions and after administration of Western diet (WD) in comparison to WT littermates. c-MYC expression was analyzed in biopsies of patients with MAFLD and MAFLD-associated HCC by immunohistochemistry. RESULTS: Mild obesity, spontaneous hyperlipidaemia, glucose intolerance and insulin resistance were characteristic of 36-week-old alb-myctg mice. Middle-aged alb-myctg exhibited liver steatosis and increased triglyceride content. Liver injury and inflammation were associated with elevated ALT, an upregulation of ER-stress response and increased ROS production, collagen deposition and compensatory proliferation. At 52 weeks, 20% of transgenic mice developed HCC. WD feeding exacerbated metabolic abnormalities, steatohepatitis, fibrogenesis and tumor prevalence. Therapeutic use of metformin partly attenuated the spontaneous MAFLD phenotype of alb-myctg mice. Importantly, upregulation and nuclear localization of c-MYC were characteristic of patients with MAFLD and MAFLD-related HCC. CONCLUSIONS: A novel function of c-MYC in MAFLD progression was identified opening new avenues for preventative strategies.

7.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188134

RESUMEN

Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.


Asunto(s)
Biología Celular , Técnicas Citológicas/métodos , Hígado/patología , Animales , Carcinoma Hepatocelular/patología , Comunicación Celular , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hígado Graso/patología , Expresión Génica , Alemania , Hepatocitos/patología , Humanos , Hipertensión Portal/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Organoides/patología
8.
Cells ; 8(11)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766207

RESUMEN

Mast cells (MCs) are immune cells of the myeloid lineage that are present in the connective tissue throughout the body and in mucosa tissue. They originate from hematopoietic stem cells in the bone marrow and circulate as MC progenitors in the blood. After migration to various tissues, they differentiate into their mature form, which is characterized by a phenotype containing large granules enriched in a variety of bioactive compounds, including histamine and heparin. These cells can be activated in a receptor-dependent and -independent manner. Particularly, the activation of the high-affinity immunoglobulin E (IgE) receptor, also known as FcεRI, that is expressed on the surface of MCs provoke specific signaling cascades that leads to intracellular calcium influx, activation of different transcription factors, degranulation, and cytokine production. Therefore, MCs modulate many aspects in physiological and pathological conditions, including wound healing, defense against pathogens, immune tolerance, allergy, anaphylaxis, autoimmune defects, inflammation, and infectious and other disorders. In the liver, MCs are mainly associated with connective tissue located in the surrounding of the hepatic arteries, veins, and bile ducts. Recent work has demonstrated a significant increase in MC number during hepatic injury, suggesting an important role of these cells in liver disease and progression. In the present review, we summarize aspects of MC function and mediators in experimental liver injury, their interaction with other hepatic cell types, and their contribution to the pathogenesis of fibrosis.


Asunto(s)
Susceptibilidad a Enfermedades , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Animales , Biomarcadores , Comunicación Celular , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/patología , Mastocitos/efectos de los fármacos , Transducción de Señal
9.
Cancers (Basel) ; 11(4)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31003440

RESUMEN

Proliferation and differentiation of intestinal epithelial cells is assisted by highly specialized and well-regulated signaling cascades. The Wnt pathway, which is one of the fundamental pathways in the intestine, contributes to the organization of proliferative intestinal crypts by positioning and cycling of intestinal stem cells and their derivatives. The Wnt pathway promotes differentiation of intestinal secretory cell types along the crypt-plateau and crypt-villus axis. In contrast to the Wnt pathway, the intestinal Notch cascade participates in cellular differentiation and directs progenitor cells towards an absorptive fate with diminished numbers of Paneth and goblet cells. Opposing activities of Notch and Wnt signaling in the regulation of intestinal stem cells and the enterocytic cell fate have been elucidated recently. In fact, targeting Notch was able to overcome tumorigenesis of intestinal adenomas, prevented carcinogenesis, and counteracted Paneth cell death in the absence of caspase 8. At present, pharmacological Notch inhibition is considered as an interesting tool targeting the intrinsic Wnt pathway activities in intestinal non-neoplastic disease and carcinogenesis.

10.
J Hepatol ; 69(6): 1326-1334, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144553

RESUMEN

BACKGROUND & AIMS: Caspase 8 (CASP8) is the apical initiator caspase in death receptor-mediated apoptosis. Strong evidence for a link between death receptor signaling pathways and cholestasis has recently emerged. Herein, we investigated the role of CASP8-dependent and independent pathways during experimental cholestasis. METHODS: Liver injury was characterized in a cohort of human sera (n = 28) and biopsies from patients with stage IV primary biliary cholangitis. In parallel, mice with either specific deletion of Casp8 in liver parenchymal cells (Casp8Δhepa) or hepatocytes (Casp8Δhep), and mice with constitutive Ripk3 (Ripk3-/-) deletion, were subjected to surgical ligation of the common bile duct (BDL) from 2 to 28 days. Floxed (Casp8fl/fl) and Ripk3+/+ mice were used as controls. Moreover, the pan-caspase inhibitor IDN-7314 was used, and cell death mechanisms were studied in primary isolated hepatocytes. RESULTS: Overexpression of activated caspase 3, CASP8 and RIPK3 was characteristic of liver explants from patients with primary biliary cholangitis. Twenty-eight days after BDL, Casp8Δhepamice showed decreased necrotic foci, serum aminotransferase levels and apoptosis along with diminished compensatory proliferation and ductular reaction. These results correlated with a decreased inflammatory profile and ameliorated liver fibrogenesis. A similar phenotype was observed in Ripk3-/- mice. IDN-7314 treatment decreased CASP8 levels but failed to prevent BDL-induced cholestasis, independently of CASP8 in hepatocytes. CONCLUSION: These findings show that intervention against CASP8 in liver parenchymal cells - specifically in cholangiocytes - might be a beneficial option for treating obstructive cholestasis, while broad pan-caspase inhibition might trigger undesirable side effects. LAY SUMMARY: Loss of caspase 8 - a protein involved in programmed cell death - in liver parenchymal cells protects against experimental cholestasis. Therefore, specific pharmacological intervention against caspase 8 might be a valid alternative for the treatment of obstructive cholestasis in the clinic, whereas broad pan-caspase inhibiting drugs might trigger undesirable side effects.


Asunto(s)
Caspasa 8/metabolismo , Colestasis/patología , Hepatocitos/metabolismo , Cirrosis Hepática Biliar/patología , Hígado/patología , Adulto , Animales , Apoptosis/efectos de los fármacos , Biopsia , Caspasa 3/metabolismo , Caspasa 8/genética , Inhibidores de Caspasas/farmacología , Colestasis/prevención & control , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Fibrosis/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Necrosis , Tejido Parenquimatoso/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(37): 9282-9287, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150405

RESUMEN

E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/metabolismo , Ciclina E/biosíntesis , Quinasa 2 Dependiente de la Ciclina/biosíntesis , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Proteínas Oncogénicas/biosíntesis , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/genética , Ciclinas/biosíntesis , Ciclinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Proteínas Oncogénicas/genética
12.
Oncogene ; 37(25): 3329-3339, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29551768

RESUMEN

Chronic liver injury triggers liver fibrosis and hepatocellular carcinoma (HCC), the third leading cause of cancer-related mortality. Cyclin E1 (CcnE1, formerly designated Cyclin E) is a regulatory subunit of the Cyclin-dependent kinase 2 (CDK2). It is overexpressed in approximately 70% of human HCCs correlating with poor prognosis, while the relevance of its orthologue Cyclin E2 (CcnE2) is unclear. Hepatocyte-specific deletion of NF-kappa-B essential modulator (NEMOΔhepa) leads to chronic hepatitis, liver fibrosis, and HCC as well as CcnE upregulation. To this end, we generated NEMOΔhepa/CcnE1-/- and NEMOΔhepa/CcnE2-/- double knockout mice and investigated age-dependent liver disease progression in these animals. Deletion of CcnE1 in NEMOΔhepa mice decreased basal liver damage and reduced spontaneous liver inflammation in young mice. In contrast, loss of CcnE2 did not affect liver injury in NEMOΔhepa livers pointing to a unique, non-redundant function of CcnE1 in chronic hepatitis. Accordingly, basal compensatory hepatocyte proliferation in NEMOΔhepa mice was reduced by concomitant ablation of CcnE1, but not after loss of CcnE2. In aged NEMOΔhepa mice, loss of CcnE1 resulted in significant reduction of liver tumorigenesis, while deletion of CcnE2 had no effect on HCC formation. CcnE1, but not its orthologue CcnE2, substantially contributes to hepatic inflammatory response, liver disease progression, and hepatocarcinogenesis in NEMOΔhepa mice.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Ciclina E/fisiología , Ciclinas/fisiología , Modelos Animales de Enfermedad , Hepatitis/prevención & control , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neoplasias Hepáticas Experimentales/prevención & control , Hígado/lesiones , Hígado/patología , Proteínas Oncogénicas/fisiología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/patología , Hepatitis/etiología , Hepatitis/patología , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Cancers (Basel) ; 9(10)2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946672

RESUMEN

Primary tumors of the liver represent the fifth most common type of cancer in the world and the third leading cause of cancer-related death. Case-control studies from different countries report that chronic ethanol consumption is associated with an approximately 2-fold increased odds ratio for hepatocellular carcinoma (HCC). Despite the substantial epidemiologic data in humans demonstrating that chronic alcohol consumption is a major risk factor for HCC development, the pathways causing alcohol-induced liver cancer are poorly understood. In this overview, we summarize the epidemiological evidence for the association between alcohol and liver cancer, review the genetic, oncogenic, and epigenetic factors that drive HCC development synergistically with ethanol intake and discuss the essential molecular and metabolic pathways involved in alcohol-induced liver tumorigenesis.

14.
Hepatology ; 66(4): 1242-1257, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28520165

RESUMEN

Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45+ cells after single injection. Acute CCl4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45+ leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. CONCLUSION: Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257).


Asunto(s)
Ciclina E/genética , Terapia Genética , Cirrosis Hepática/prevención & control , Proteínas Oncogénicas/genética , ARN Interferente Pequeño/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Tetracloruro de Carbono , Proliferación Celular , Ciclina E/antagonistas & inhibidores , Células Estrelladas Hepáticas/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Hipertrofia , Leucocitos/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Proteínas Oncogénicas/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/farmacología
15.
J Hepatol ; 64(3): 628-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26576483

RESUMEN

BACKGROUND & AIMS: Progression of alcoholic liver disease (ALD) can be influenced by genetic factors, which potentially include specific oncogenes and tumor suppressors. In the present study, we tested the hypothesis that aberrant expression of the proto-oncogene c-myc might exert a crucial role in the development of ALD. METHODS: Expression of c-myc was measured in biopsies of patients with ALD by quantitative real-time PCR and immunohistochemistry. Mice with transgenic expression of c-myc in hepatocytes (alb-myc(tg)) and wild-type (WT) controls were fed either control or ethanol (EtOH) containing Lieber-DeCarli diet for 4weeks to induce ALD. RESULTS: Hepatic c-myc was strongly upregulated in human patients with advanced ALD and in EtOH-fed WT mice. Transcriptome analysis indicated deregulation of pathways involved in ER-stress, p53 signaling, hepatic fibrosis, cell cycle regulation, ribosomal synthesis and glucose homeostasis in EtOH-fed alb-myc(tg) mice. Transgenic expression of c-myc in hepatocytes with simultaneous EtOH-uptake led to early ballooning degeneration, increased liver collagen deposition and hepatic lipotoxicity, together with excessive CYP2E1-derived reactive oxygen species (ROS) production. Moreover, EtOH-fed alb-myc(tg) mice exhibited substantial changes in mitochondrial morphology associated with energy dysfunction. Pathway analysis revealed that elevated c-myc expression and ethanol uptake synergistically lead to strong AKT activation, Mdm2 phosphorylation and as a consequence to inhibition of p53. CONCLUSIONS: Expression of c-myc and EtOH-uptake synergistically accelerate the progression of ALD most likely due to loss of p53-dependent protection. Thus, c-myc is a new potential marker for the early detection of ALD and identification of risk patients.


Asunto(s)
Genes myc/fisiología , Hepatocitos/metabolismo , Hepatopatías Alcohólicas/etiología , Animales , Ciclo Celular , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Ácidos Grasos no Esterificados/metabolismo , Humanos , Regeneración Hepática , Masculino , Ratones , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/fisiología
16.
Gastroenterology ; 150(4): 968-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708719

RESUMEN

BACKGROUND & AIMS: c-Jun N-terminal kinase (JNK) 1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated via phosphorylation in response to acetaminophen- or carbon tetrachloride (CCl4)-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissue from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, nonsteroidal anti-inflammatory drugs, or autoimmune hepatitis) or patients without acute liver failure (controls) collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and Western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1(Δhepa)) or combination of Jnk1 and Jnk2 (Jnk(Δhepa)), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to Jnk(Δhepa) mice produced a greater level of liver injury than that observed in Jnk1(Δhepa) or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in Jnk(Δhepa) mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared with Jnk1(Δhepa) or control mice. Hepatocytes from Jnk(Δhepa) mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of adenosine monophosphate-activated protein kinase, total protein adenosine monophosphate-activated protein kinase levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected Jnk(Δhepa) and control mice from liver injury. CONCLUSIONS: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/enzimología , Fallo Hepático Agudo/prevención & control , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetaminofén , Animales , Tetracloruro de Carbono , Estudios de Casos y Controles , Muerte Celular , Proliferación Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Perfilación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/enzimología , Fallo Hepático Agudo/genética , Fallo Hepático Agudo/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética , Estrés Oxidativo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Factores de Tiempo , Adulto Joven
17.
Biochem Biophys Res Commun ; 458(3): 700-706, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25686493

RESUMEN

The inflammasomes are cytoplasmic multiprotein complexes that are responsible for activation of inflammatory reactions. In principle, there are four individual inflammasome branches (NLRP1, NLRP3, NLRC4/NALP4, and AIM2) that mediate the cleavage and activation of Caspase-1 and IL-1ß that in turn lead to a complex network of cellular reactions initiating local and systemic inflammatory reactions. We have recently shown that NLRP3 expression is virtually absent in primary cultured hepatocytes and that in vitro the stimulation of hepatocytes with lipopolysaccharides results in strong activation of NLRP3 expression. We here demonstrate that this activation can be blocked by the NF-κB activation inhibitor QNZ or by infection with an adenoviral expression vector constitutively expressing a superrepressor of NF-κB. We show that QNZ blocks NF-κB-dependent expression of TNF-α, IL-1ß and NLRP3. Likewise, the superrepressor of NF-κB prevents expression of NLRP3 and significantly reduces expression of inflammatory marker genes in liver cells. In a primary murine hepatoma cells, the concomitant depletion of NEMO and Caspase-8 resulted in a significant suppression of NLRP3 expression after Lipopolysaccharide challenge. Moreover, we demonstrate that a 1.3-kbp fragment located in close proximity of the most upstream transcriptional start site of the human NLRP3 gene that harbours one putative octamer NF-κB binding site renders LPS sensitivity in reporter gene assay. We conclude that NF-κB signalling is a necessary prerequisite for proper activation of the NLRP3 inflammasome in primary hepatocytes.


Asunto(s)
Proteínas Portadoras/genética , Hepatocitos/inmunología , Inflamasomas/genética , FN-kappa B/inmunología , Animales , Proteínas Portadoras/inmunología , Caspasa 8/inmunología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inflamasomas/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR
18.
Cancer Res ; 75(6): 1144-55, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25608711

RESUMEN

Genetic mouse studies suggest that the NF-κB pathway regulator NEMO (also known as IKKγ) controls chronic inflammation and carcinogenesis in the liver. However, the molecular mechanisms explaining the function of NEMO are not well defined. Here, we report that overexpression of the cell-cycle regulator p21 is a critical feature of liver inflammation and carcinogenesis caused by the loss of NEMO. NEMO(Δhepa) mice develop chronic hepatitis characterized by increased hepatocyte apoptosis and proliferation that causes the development of fibrosis and hepatocellular carcinoma (HCC), similar to the situation in human liver disease. Having identified p21 overexpression in this model, we evaluated its role in disease progression and LPS-mediated liver injury in double mutant NEMO(Δhepa)/p21(-/-) mice. Eight-week-old NEMO(Δhepa)/p21(-/-) animals displayed accelerated liver damage that was not associated with alterations in cell-cycle progression or the inflammatory response. However, livers from NEMO(Δhepa)/p21(-/-) mice displayed more severe DNA damage that was further characterized by LPS administration correlating with higher lethality of the animals. This phenotype was attenuated by genetic ablation of the TNF receptor TNF-R1 in NEMO(Δhepa)/p21(-/-) mice, demonstrating that DNA damage is induced via TNF. One-year-old NEMO(Δhepa)/p21(-/-) mice displayed greater numbers of HCC and severe cholestasis compared with NEMO(Δhepa) animals. Therefore, p21 overexpression in NEMO(Δhepa) animals protects against DNA damage, acceleration of hepatocarcinogenesis, and cholestasis. Taken together, our findings illustrate how loss of NEMO promotes chronic liver inflammation and carcinogenesis, and they identify a novel protective role for p21 against the generation of DNA damage.


Asunto(s)
Colestasis/etiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Daño del ADN , Neoplasias Hepáticas Experimentales/etiología , Animales , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Queratina-19/análisis , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
J Hepatol ; 62(5): 1156-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25445398

RESUMEN

BACKGROUND & AIMS: Low-grade chronic inflammation is a cardinal feature of the metabolic syndrome, yet its pathogenesis is not well defined. The purpose of this study was to examine the role of TRAIL receptor (TR) signaling in the pathogenesis of obesity-associated inflammation using mice with the genetic deletion of TR. METHODS: TR knockout (TR(-/-)) mice and their littermate wild-type (WT) mice were fed a diet high in saturated fat, cholesterol and fructose (FFC) or chow. Metabolic phenotyping, liver injury, and liver and adipose tissue inflammation were assessed. Chemotaxis and activation of mouse bone marrow-derived macrophages (BMDMϕ) was measured. RESULTS: Genetic deletion of TR completely repressed weight gain, adiposity and insulin resistance in FFC-fed mice. Moreover, TR(-/-) mice suppressed steatohepatitis, with essentially normal serum ALT, hepatocyte apoptosis and liver triglyceride accumulation. Gene array data implicated inhibition of macrophage-associated hepatic inflammation in the absence of the TR. In keeping with this, there was diminished accumulation and activation of inflammatory macrophages in liver and adipose tissue. TR(-/-) BMDMϕ manifest reduced chemotaxis and diminished activation of nuclear factor-κ B signaling upon activation by palmitate and lipopolysaccharide. CONCLUSIONS: These data advance the concept that macrophage-associated hepatic and adipose tissue inflammation of nutrient excess requires TR signaling.


Asunto(s)
Tejido Adiposo , Inflamación , Hígado , Macrófagos , Obesidad , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Quimiotaxis , Dieta Alta en Grasa/métodos , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal
20.
J Hepatol ; 62(1): 140-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25173965

RESUMEN

BACKGROUND & AIMS: Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signalling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMO(Δhepa)), a genetic model of chronic inflammatory liver injury. METHODS: We generated Jnk1(-/-)/NEMO(Δhepa) and Jnk2(-/-)/NEMO(Δhepa) mice by crossing NEMO(Δhepa) mice with Jnk1 and Jnk2 global deficient animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analysed the expression of NEMO and p-JNK in human diseased-livers. RESULTS: Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMO(Δhepa) mice. Conversely, Jnk2(-/-)/NEMO(Δhepa) displayed hepatic inflammation. By using bone marrow transfer, we observed that Jnk1 in haematopoietic cells had an impact on the progression of chronic liver disease in NEMO(Δhepa) livers. These findings are of clinical relevance since NEMO expression was downregulated in hepatocytes of patients with HCC whereas NEMO and p-JNK were expressed in a large amount of infiltrating cells. CONCLUSIONS: A synergistic function of Jnk1 in haematopoietic cells and hepatocytes might be relevant for the development of chronic liver injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular/genética , Proteínas Portadoras/genética , Regulación Neoplásica de la Expresión Génica , Hepatocitos/patología , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Glicoproteínas de Membrana/genética , Anciano , Animales , Apoptosis , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas Portadoras/biosíntesis , ADN de Neoplasias/genética , Progresión de la Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales , Masculino , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Noqueados , Persona de Mediana Edad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA