Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331894

RESUMEN

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Asunto(s)
Multiómica , Neoplasias de la Tiroides , Humanos , Glicina Hidroximetiltransferasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Redes y Vías Metabólicas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2218361120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014852

RESUMEN

The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/genética , Histona Acetiltransferasas/metabolismo , Cromatina/genética , Genes Supresores de Tumor , Carcinogénesis/genética , Unión Proteica , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Clin Exp Otorhinolaryngol ; 16(2): 184-197, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36822197

RESUMEN

OBJECTIVES: The mitochondrial ribosomal protein L14 (MRPL14) is encoded by a nuclear gene and participates in mitochondrial protein translation. In this study, we aimed to investigate the role of MRPL14 in thyroid cancer. METHODS: We investigated the association between MRPL14 expression and clinicopathological features using The Cancer Genome Atlas (TCGA) and Chungnam National University Hospital (CNUH) databases. Functional studies of MRPL14, including proliferation, migration, invasion, mitochondrial oxidative phosphorylation and reactive oxygen species (ROS) production, were performed in papillary thyroid cancer (PTC) cell lines (B-CPAP and KTC-1). RESULTS: Based on the TCGA dataset, PTC tissues lost mitochondrial integrity and showed dysregulated expression of overall mitoribosomal proteins (MRPs) compared with normal thyroid tissues. Of 78 MRPs, MRPL14 was highly expressed in thyroid cancer tissues. MRPL14 overexpression was significantly associated with advanced tumor stage, extrathyroidal extension, and lymph node metastasis. MRPL14 increased cell proliferation of thyroid cancer and promoted cell migration via epithelial-mesenchymal transition-related proteins. Moreover, MRPL14 knockdown reduced the expression of oxidative phosphorylation complex IV (MTCO1) and increased the accumulation of ROS. Cotreatment with a ROS scavenger restored cell proliferation and migration, which had been reduced by MRPL14 knockdown, implying that ROS functions as a key regulator of the oncogenic effects of MRPL14 in thyroid cancer cells. CONCLUSION: Our findings indicate that MRPL14 may promote cell growth, migration, and invasion by modulating ROS in thyroid cancer cells.

4.
Sci Rep ; 13(1): 2000, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737651

RESUMEN

Oral squamous cell carcinoma (OSCC) has high recurrence and mortality rates despite advances in diagnosis and treatment. Therefore, it is necessary to identify new biomarkers for early detection, efficient monitoring, and prognosis prediction. Since microRNA (miRNA) is stable and detectable in serum, it has been reported to inform the diagnosis and monitor disease progression through liquid biopsy. In this study, a circulating specific miRNA panel in OSCC patients was developed, and its usefulness as a dynamic monitor was validated. Small RNAs were extracted from the serum of OSCC patients (n = 4) and normal controls (n = 6) and profiled using next-generation sequencing. NGS identified 42 differentially expressed miRNAs (DEmiRNAs) in serum between patients with OSCC and healthy controls, with threefold differences (p < 0.05). Combining the 42 DEmiRNAs and The Cancer Genome Atlas (TCGA) databases OSCC cohort, 9 overlapping DEmiRNAs were screened out. Finally, 4 significantly up-regulated miRNAs (miR-92a-3p, miR-92b-3p, miR-320c and miR-629-5p) were identified from OSCC patients via validation in the Chungnam National University Hospital cohort. Application of the specific miRNA panel for distinguishing OSCC patients from healthy controls produced specificity and sensitivity of 97.8 and 74%, respectively. In addition, the serum levels of these 4 miRNAs significantly decreased after complete surgical resection and increased after recurrence. We suggest that circulating 4-miRNA panel might be promising non-invasive predictors for diagnosing and monitoring the progression of patients with OSCC.


Asunto(s)
MicroARN Circulante , MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
5.
J Pathol ; 258(3): 264-277, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098211

RESUMEN

Thyroid cancer is associated with genetic alterations, e.g. BRAFV600E , which may cause carcinomatous changes in hormone-secreting epithelial cells. Epidemiological studies have shown that overnutrition is related to the development and progression of cancer. In this study, we attempted to identify the cell nonautonomous factor responsible for the progression of BRAFV600E thyroid cancer under overnutrition conditions. We developed a mouse model for inducible thyrocyte-specific activation of BRAFV600E , which showed features similar to those of human papillary thyroid cancer. LSL-BrafV600E ;TgCreERT2 showed thyroid tumour development in the entire thyroid, and the tumour showed more abnormal cellular features with mitochondrial abnormalities in mice fed a high-fat diet (HFD). Transcriptomics revealed that adrenomedullin2 (Adm2) was increased in LSL-BrafV600E ;TgCreERT2 mice fed HFD. ADM2 was upregulated on the addition of a mitochondrial complex I inhibitor or palmitic acid with integrated stress response (ISR) in cancer cells. ADM2 stimulated protein kinase A and extracellular signal-regulated kinase in vitro. The knockdown of ADM2 suppressed the proliferation and migration of thyroid cancer cells. We searched The Cancer Genome Atlas and Genotype-Tissue Expression databases and found that increased ADM2 expression was associated with ISR and poor overall survival. Consistently, upregulated ADM2 expression in tumour cells and circulating ADM2 molecules were associated with aggressive clinicopathological parameters, including body mass index, in thyroid cancer patients. Collectively, we identified that ADM2 is released from cancer cells under mitochondrial stress resulting from overnutrition and acts as a secretory factor determining the progressive properties of thyroid cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hipernutrición , Hormonas Peptídicas , Neoplasias de la Tiroides , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Hormonas , Humanos , Ratones , Mutación , Nutrientes , Ácido Palmítico , Hormonas Peptídicas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias de la Tiroides/patología
6.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077112

RESUMEN

Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Proliferación Celular/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Masculino , Células Madre Neoplásicas/metabolismo , Serina/metabolismo
7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681812

RESUMEN

Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-ß (TGF-ß) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15-EGR1 signaling axis may be a good target in HNC patients.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor 15 de Diferenciación de Crecimiento/genética , Neoplasias de Cabeza y Cuello/patología , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica , Factor 15 de Diferenciación de Crecimiento/fisiología , Células HaCaT , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/genética , Células Tumorales Cultivadas
8.
Phytomedicine ; 92: 153758, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34592487

RESUMEN

BACKGROUND: Despite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug. METHODS: We carried out the western blot and small interfering RNA (siRNA) transfection assay to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model. RESULTS: We found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3. CONCLUSIONS: These results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.


Asunto(s)
Curcumina , Neoplasias de Cabeza y Cuello , Animales , Linfocitos T CD8-positivos , Curcumina/farmacología , Humanos , Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor , Ratones , Microambiente Tumoral
9.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477921

RESUMEN

(1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer cells, providing a promising alternative treatment strategy. Although recent studies have identified new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA. NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible 45α (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1 levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45α signaling. Furthermore, our data provide evidence that the regulation of the EGR1/GADD45α axis can be a novel strategy for the treatment of THCA.

10.
Thyroid ; 31(5): 772-786, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33256569

RESUMEN

Background: Mitochondrial stress is known to activate the mitochondrial unfolded protein response (UPRmt). The UPRmt results in the secretion of mitochondrial cytokines (mitokines), which can promote a hormetic response cell nonautonomously, and has been reported to be protumorigenic. Growth differentiation factor 15 (GDF15) is a well-characterized mitokine, which is reported to have a mitohormetic effect. Thus, we investigated whether GDF15 induction could prime a subpopulation of thyroid cancer cells to provide invasive advantages. Methods: The UPRmt, including mitokine expression, was assessed in the context of thyroid cancer in vitro and in vivo. GDF15 expression in 266 patients with papillary thyroid carcinoma (PTC) was determined by immunohistochemistry. The serum levels of GDF15 were measured in healthy subjects and PTC patients. In addition, our own and The Cancer Genome Atlas data were analyzed to determine the expression level of GDF15 in thyroid cancers. The role of GDF15 in tumor aggressiveness was investigated by observing the effects of GDF15 knockdown in BCPAP, TPC-1, 8505C, and FRO cells. Results: Pharmacological inhibition of mitochondrial oxidative phosphorylation function in thyroid cancer cells robustly increased GDF15 expression. The expression of GDF15 was associated with activation of the mitochondrial integrated stress response pathway in PTC patients. Circulating GDF15 levels were significantly higher in PTC patients than in the controls, and tumor expression of GDF15 was related to tumor aggressiveness. In vitro and in vivo knockdown of GDF15 in a thyroid cancer model showed decreased viability, migration, and invasion compared with the control cells via regulation of STAT3. Conclusions: In this study, we demonstrated that GDF15 is a mitokine induced in thyroid cancer cells upon mitochondrial stress. GDF15-induced STAT3 activation determined tumor progression in thyroid cancer. The GDF15-STAT3 signaling axis may be a target in aggressiveness of thyroid cancer.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Adenoma Oxifílico/genética , Adenoma Oxifílico/metabolismo , Adenoma Oxifílico/patología , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Mitocondrias , Invasividad Neoplásica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Células Epiteliales Tiroideas/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Respuesta de Proteína Desplegada
11.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32474599

RESUMEN

BACKGROUND: Brn3a/Pou4f1 is a class IV POU domain-containing transcription factor and has been found to be expressed in a variety of cancers. However, the mechanism and action of Brn3a in thyroid cancer has not been investigated. PURPOSE: To investigate the role of Brn3a in thyroid cancer progression and its clinical implication. METHODS: We examined Brn3a expression status in patients with thyroid cancer and analyzed relationships between Brn3a expression and clinicopathological findings using The Cancer Genome Atlas (TCGA) database. For functional in vitro analysis, proliferation, migration, invasion assay, and Western blotting were performed after overexpression or suppression of Brn3a. RESULTS: The promoter hypermethylation of Brn3a was found in patients with aggressive thyroid cancer and Brn3a was downregulated in tissues of patients with thyroid cancer. In TCGA database, the low-Brn3a-expression group revealed a more aggressive phenotype, including T stage and extrathyroid extension when compared with the high-Brn3a-expression group. Overexpression of Brn3a suppressed cell migration and invasion via regulation of epithelial-mesenchymal transition (EMT)-associated proteins in thyroid cancer cell lines. Brn3a overexpression also downregulated signal transducer and activator of transcription 3 (STAT3) signaling through suppression of tyrosine-protein kinase Met (c-MET). In contrast, knockdown of Brn3a by small interfering ribonucleic acid (siRNA) significantly increased cell migration and invasion through upregulation of c-MET/STAT3. These results imply that Brn3a suppresses tumor metastasis via c-MET/STAT3 inhibition and EMT suppression in thyroid cancer. CONCLUSIONS: Our findings show that Brn3a is a potential tumor suppressor that leads to reduced cancer cell migration and invasion in thyroid cancer. Elucidation of the Brn3a-regulated cancer pathways may therefore provide novel therapeutic strategies to control thyroid cancer metastasis.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/genética , Factor de Transcripción STAT3/genética , Neoplasias de la Tiroides/genética , Factor de Transcripción Brn-3A/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor/fisiología , Humanos , Análisis por Micromatrices , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Neoplasias de la Tiroides/patología
12.
Auris Nasus Larynx ; 47(5): 870-880, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32381353

RESUMEN

OBJECTIVE: Neuropilin-2 (NRP2) is a coreceptor of vascular endothelial growth factor-C/D (VEGF-C/D) and plays the important role in the development of lymphatic endothelial cells, as well as neuronal development. NRP2 is known to affect aggressiveness by increasing expression in various human cancers, but the role of NRP2 in thyroid cancer is not fully understood. The purpose of this study was to investigate the NRP2 expression and its role in regulating the tumor aggressiveness in the papillary thyroid carcinoma (PTC). METHODS: The NRP2 expression and its clinicopathologic correlation to PTC was determined using the data from the 262 PTC patients at a tertiary referral medical center and The Cancer Genome Atlas (TCGA) database. The potential role of NRP2 in modulating tumor growth, invasion, and metastasis in PTC was examined by using small interfering RNA (siRNA)-mediated knockdown of NRP2. RESULTS: High expression of NRP2 was significantly associated with capsular invasion, lymphovascular invasion, lymph node metastasis, 5 or more metastatic lymph nodes, and recurrence in PTC patients. In TCGA data, the higher NRP2 expression group was significantly associated with extrathyroid extension, lymph node metastasis, and BRAFV600E mutation. The siRNA mediated knockdown of NRP2 in the PTC cells reduced the cell proliferation, migration and invasion. We also have confirmed that NRP2 knockdown suppressed epithelial-mesenchymal transition (EMT) by regulating AKT and ERK phosphorylation signaling pathways. CONCLUSION: Our results suggest that NRP2 regulates tumor progression in PTC and may act as a predictive factor for aggressiveness of PTC.


Asunto(s)
Neuropilina-2/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo , Adulto , Análisis de Varianza , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Inmunohistoquímica , Metástasis Linfática , Masculino , Persona de Mediana Edad , Mutación , Invasividad Neoplásica , Neuropilina-2/genética , Proteínas Proto-Oncogénicas B-raf/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Factores de Crecimiento Endotelial Vascular
13.
FASEB J ; 34(1): 248-262, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914604

RESUMEN

This study was aimed at investigating the therapeutic effects of BITRAP, a bispecific fusion protein targeting TNF-α and IL-21, on the development of autoimmune arthritis in humans and mice. To verify the effects of BITRAP in human, peripheral blood mononuclear cells were cultured with BITRAP under IL-17-producing T (Th17) cell-polarizing conditions or osteoclast differentiation conditions. BITRAP treatment inhibited the production of IL-17 and vascular endothelial growth factor but increased the production of IL-10 in CD4+ T cells, as well as directly suppressed osteoclastogenesis. Collagen-induced arthritis (CIA) and IL-1R antagonist (IL-1Ra) knockout mice were treated with BITRAP. Following injection in CIA mice, BITRAP rapidly migrated into the inflamed joints and remained there for 72 hours. Application of BITRAP attenuated the severity of autoimmune arthritis in CIA and IL-1Ra knockout mice by reducing the numbers of inflammatory cytokine-expressing cells and Th17 cells and antibody secretion. Finally, BITRAP suppressed STAT3 phosphorylation, as well as production of IL-17 and TNF-α, in murine splenic CD4+ T cells. These findings suggest that BITRAP, a bispecific fusion protein targeting TNF-α and IL-21, may be an effective treatment to overcome the limitations of anti-TNF therapy for patients with rheumatoid arthritis.


Asunto(s)
Artritis/tratamiento farmacológico , Interleucinas/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Factores de Coagulación Sanguínea , Linfocitos T CD4-Positivos , Fibroblastos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Inmunoglobulinas/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Osteogénesis/efectos de los fármacos , Ingeniería de Proteínas , Proteínas Recombinantes , Células Th17 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
14.
Cancers (Basel) ; 11(8)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408968

RESUMEN

Fibroblast growth factor 21 (FGF21) plays important roles in regulating glucose, lipid, and energy metabolism; however, its effects in tumors remain poorly understood. To understand the role of FGF21 in regulating tumor aggressiveness in thyroid cancer, serum levels of FGF21 were measured in healthy subjects and patients with papillary thyroid cancer (PTC), and expression levels of FGF21, FGF receptors (FGFRs), and ß-klotho (KLB) were investigated in human thyroid tissues. The cell viability, migrating cells, and invading cells were measured in PTC cells after treatment with recombinant FGF21. Higher serum levels of FGF21 were found in patients with thyroid cancer than in control participants, and were significantly associated with body mass index (BMI), fasting glucose levels, triglyceride levels, tumor stage, lymphovascular invasion, and recurrence. Serum FGF21 levels were positively correlated with the BMI in patients with PTC, and significantly associated with recurrence. Recombinant FGF21 led to tumor aggressiveness via activation of the FGFR signaling axis and epithelial-to-mesenchymal transition (EMT) signaling in PTC cells, and AZD4547, an FGFR tyrosine kinase inhibitor, attenuated the effects of FGF21. Hence, FGF21 may be a new biomarker for predicting tumor progression, and targeting FGFR may be a novel therapy for the treatment of obese patients with PTC.

15.
ACS Appl Mater Interfaces ; 11(27): 24298-24307, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31187618

RESUMEN

We have developed a novel fabrication method for flexible gas sensors for toxic gases based on sequential wet chemical reaction. In specific, zinc oxide (ZnO) nanowires were locally synthesized and directly integrated on a flexible polymer substrate using localized hydrothermal synthesis methods and their surfaces were selectively functionalized with palladium (Pd) nanoparticles using a liquid phase deposition process. Because the entire process is conducted at a low temperature in a mild precursor solution, it can be applied for flexible substrates. Furthermore, the surface of ZnO nanowires was sulfurized by hydrogen sulfide (H2S) gas to form zinc oxide/zinc sulfide (ZnO/ZnS) core-shell nanowires for stable sensing of H2S gas. The locally synthesized ZnO/ZnS core-shell nanowires enable an ultracompact-sized device, and Pd nanoparticles improve the sensing performance and reduce the operating temperature (200 °C). The device shows a high sensitivity [(Ggas - Gair)/Gair × 100% = 4491% to 10 ppm], fast response (response/recovery time <100 s) to hydrogen sulfide, and outstanding selectivity (>100 times) to other toxic gases (e.g., carbon monoxide, acetone, ethanol, and toluene). Moreover, vertically synthesized nanowires provide a long bending path, which reduces the mechanical stresses on the structure. The devices showed stable gas sensing performance under 9 mm positive radius of curvature and 5 mm negative radius of curvature. The mechanical robustness of the device was also verified by numerical simulations which showed dramatic decrease of maximum stress and strain to 4.2 and 5.0%, respectively.

16.
Am J Pathol ; 187(9): 2034-2045, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28704638

RESUMEN

Regulator of calcineurin 3 (RCAN3), an endogenous regulator of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, inhibits the phosphatase activity of calcineurin, the nuclear translocation of NFAT, and the NFAT downstream pathway. To investigate the effects of RCAN3 on T-cell regulatory function and the development and progression of inflammatory arthritis, we studied the effects of RCAN3 transfection on regulation of Th17 cell differentiation in a murine T-lymphoma cell line and primary splenic CD4+ T cells. Overexpression of RCAN3 suppressed Th17 cell differentiation through the down-regulation of RAR receptor orphan receptor γT mRNA and up-regulation of forkhead box P3 mRNA. In mice with collagen-induced arthritis, injection of an RCAN3-overexpression vector controlled arthritis development in vivo. Injection of RCAN3 reduced the formation of osteoclasts and expression of inflammatory cytokines in vivo. Antioxidants stimulated the expression of RCAN3 in vitro, and combination therapy with pcDNA-RCAN3 had a synergistic suppressive effect on the development of arthritis. These data suggest that RCAN3 may be an effective treatment for rheumatoid arthritis.


Asunto(s)
Artritis Experimental/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Células Th17/citología , Proteínas Adaptadoras Transductoras de Señales , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Proteínas Portadoras/genética , Citocinas/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Masculino , Ratones , Células Th17/metabolismo
17.
Arthritis Rheumatol ; 66(5): 1195-207, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24782183

RESUMEN

OBJECTIVE: The small molecule halofuginone has been shown to inhibit fibrosis, angiogenesis, and tumor progression. This study was undertaken to evaluate the effects of halofuginone in preventing autoimmune arthritis in mice. METHODS: The effects of halofuginone on joint diseases were assessed by clinical scoring and histologic analysis. Protein expression levels were confirmed by immunohistochemistry, enzyme-linked immunosorbent assay, flow cytometry, and/or Western blotting. The expression levels of messenger RNA (mRNA) for various molecules were determined by real-time polymerase chain reaction (PCR). Proliferation of osteoclast precursors was assessed by bromodeoxyuridine uptake. Osteoclast differentiation and activity were determined by quantifying tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and area of resorbed bone. RESULTS: Treatment with halofuginone suppressed the development of autoimmune arthritis and reciprocally regulated Th17 cells and FoxP3+ Treg cells. These effects of halofuginone on Th17 differentiation involved increased signaling of ERK and reduction of STAT-3 and NF-ATc1 expression. Furthermore, halofuginone induced the expression of indoleamine 2,3-dioxygenase (IDO) in dendritic cells, leading to reduced production of Th17 cells. In addition, halofuginone prevented the formation and activity of osteoclasts through suppression of transcription factors, such as activator protein 1 and NF-ATc1, and inhibited cell cycle arrest by the committed osteoclast precursors via expression of Ccnd1 encoding cyclin D1. CONCLUSION: Taken together, our results suggest that halofuginone is a promising therapeutic agent for the treatment of Th17 cell-mediated inflammatory diseases and bone diseases.


Asunto(s)
Artritis/prevención & control , Enfermedades Autoinmunes/prevención & control , Diferenciación Celular/fisiología , Osteoclastos/patología , Piperidinas/uso terapéutico , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Quinazolinonas/uso terapéutico , Linfocitos T Reguladores/patología , Células Th17/patología , Animales , Artritis/patología , Artritis/fisiopatología , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/fisiopatología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteoprotegerina/farmacología , Osteoprotegerina/uso terapéutico , Piperidinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos
18.
Arthritis Rheumatol ; 66(4): 874-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24757140

RESUMEN

OBJECTIVE: Rebamipide, a gastroprotective agent, has the ability to scavenge reactive oxygen radicals. Increased oxidative stress is implicated in the pathogenesis of rheumatoid arthritis (RA). We undertook this study to investigate the impact of rebamipide on the development of arthritis and the pathophysiologic mechanisms by which rebamipide attenuates arthritis severity in a murine model of RA. METHODS: Collagen-induced arthritis (CIA) was induced in DBA/1J mice. Anti-type II collagen antibody titers and interleukin-17 (IL-17) levels were determined using enzyme-linked immunosorbent assay. The expression of transcription factors was analyzed by immunostaining and Western blotting. Frequencies of IL-17-producing CD4+ T cells (Th17 cells) and CD4+CD25+FoxP3+ Treg cells were analyzed by flow cytometry. RESULTS: Rebamipide reduced the clinical arthritis score and severity of histologic inflammation and cartilage destruction in a dose-dependent manner. The joints isolated from rebamipide-treated mice with CIA showed decreased expression of nitrotyrosine, an oxidative stress marker. Rebamipide-treated mice showed lower circulating levels of type II collagen-specific IgG, IgG1, and IgG2a. Whereas the number of Th17 cells in spleens was decreased in rebamipide-treated mice with CIA, a significant increase in the number of Treg cells in spleens was observed. In vitro, rebamipide inhibited Th17 cell differentiation through STAT-3/retinoic acid receptor-related orphan nuclear receptor γt and reciprocally induced Treg cell differentiation through FoxP3. Rebamipide increased Nrf2 nuclear activities in murine CD4+ T cells and LBRM-33 murine T lymphoma cells. Heme oxygenase 1 (HO-1) expression in the spleens was markedly increased in rebamipide-treated mice. CONCLUSION: The inhibitory effects of rebamipide on joint inflammation are associated with recovery from an imbalance between Th17 cells and Treg cells and with activation of an Nrf2/HO-1 antioxidant pathway.


Asunto(s)
Alanina/análogos & derivados , Antirreumáticos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Quinolonas/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antirreumáticos/farmacología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Autoanticuerpos/sangre , Citocinas/sangre , Masculino , Ratones , Ratones Endogámicos DBA , Quinolonas/farmacología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/metabolismo , Células Th17/patología
19.
Exp Gerontol ; 49: 55-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24140620

RESUMEN

OBJECTIVE: Aging has been reported to be associated with changes in immune function. Although frequent infection and the development of malignancy suggest the decline of immune function with aging, changes toward proinflammatory conditions also develop at the same time. Th17 cells are well known CD4(+) T cell subpopulation closely linked to chronic inflammation and autoimmunity. In this study, changes in the Th17 population were investigated to elucidate a possible mechanism for this response with aging. METHODS: Splenocytes were isolated from 2-month-old (young) and 20-month-old (aged) mice. CD4(+)CD44(+) memory T cells and CD4(+)CD62L(+) naïve T cells were isolated and sorted using magnetic beads and flow cytometry. The frequency of IL-17-producing cells was measured using flow cytometry. The expression of IL-17 and Th17-related factors at the mRNA level was measured with RT-PCR. IL-17 and Il-1ß expression in spleen tissues was additionally assessed using confocal microscopy. RESULTS: The proportion of IL-17-producing CD4(+) T cells was higher in the splenocytes among the old mice than those of the young mice. When splenocytes were cultured in Th17 polarizing conditions, the proportion of IL-17 producing CD4(+) T cells was higher in aged mice as well. This was consistently observed when naïve and memory cells were isolated and differentiated into Th17 respectively. In addition, the expression of retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt) and other Th17-related factors (AhR, CCR6, and CCL20) increased in the splenocytes of aged mice compared to the young mice. The expression of IL-1ß, showing to promote Th17 differentiation, was higher in the aged mice. Likewise, CD4(+) T cell expression of IL-1R was higher in the aged mice, suggesting that the CD4(+) T cells of the aged mice are readily prepared to differentiate into Th17 cells in response to IL-1ß. Confocal microscopy showed that cells positive for IL-1R or IL-1ß were more frequent in the spleens of the aged mice. When an anti-IL-2 antibody was applied, the proportion of IL-17-producing cells increased more prominently in the young mice. We observed that IL-2 production and IL-2R expression were reduced in the aged mice, respectively, explaining the blunted response to the anti-IL-2 antibody treatment and the consequent minimal change in the Th17 population. CONCLUSION: We demonstrated that the proportion of Th17 cells increased in the aged mice both in naïve and memory cell populations. Elevation of IL-1R and IL-1ß expression and the reduction in IL-2 and IL-2R expression in aged mice seemed to promote Th17 differentiation. Our results suggest that enhanced Th17 differentiation in aging may have a pathogenic role in the development of Th17-mediated autoimmune diseases.


Asunto(s)
Envejecimiento/inmunología , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Células Th17/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Técnicas de Cocultivo , Interleucina-17/biosíntesis , Interleucina-2/antagonistas & inhibidores , Interleucina-2/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-1/biosíntesis , Bazo/inmunología , Células Th17/citología , Regulación hacia Arriba/inmunología
20.
Exp Mol Med ; 45: e46, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24091748

RESUMEN

Interleukin (IL)-27 is a novel cytokine of the IL-6/IL-12 family that has been reported to be involved in the pathogenesis of autoimmune diseases and has a pivotal role as both a pro- and anti-inflammatory cytokine. We investigated the in vivo effects of IL-27 on arthritis severity in a murine collagen-induced arthritis (CIA) model and its mechanism of action regarding control of regulatory T (Tregs) and IL-17-producing T helper 17 (Th17) cells. IL-27-Fc-treated CIA mice showed a lower severity of arthritis. IL-17 expression in the spleens was significantly decreased in IL-27-Fc-treated CIA mice compared with that in the CIA model. The Th17 population was decreased in the spleens of IL-27-Fc-treated CIA mice, whereas the CD4(+)CD25(+)Foxp3(+) Treg population increased. In vitro studies revealed that IL-27 inhibited IL-17 production in murine CD4(+) T cells, and the effect was associated with retinoic acid-related orphan receptor γT and signal transducer and activator of transcription 3 inhibition. In contrast, fluorescein isothiocyanate-labeled forkhead box P3 (Foxp3) and IL-10 were profoundly augmented by IL-27 treatment. Regarding the suppressive capacity of Treg cells, the proportions of CTLA-4(+) (cytotoxic T-lymphocyte antigen 4), PD-1(+) (programmed cell death protein 1) and GITR(+) (glucocorticoid-induced tumor necrosis factor receptor) Tregs increased in the spleens of IL-27-Fc-treated CIA mice. Furthermore, in vitro differentiated Treg cells with IL-27 exerted a more suppressive capacity on T-cell proliferation. We found that IL-27 acts as a reciprocal regulator of the Th17 and Treg populations in CD4(+) cells isolated from healthy human peripheral blood mononuclear cells (PBMCs), as well as from humans with rheumatoid arthritis (RA) PBMCs. Our study suggests that IL-27 has the potential to ameliorate overwhelming inflammation in patients with RA through a reciprocal regulation of Th17 and Treg cells.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Interleucinas/uso terapéutico , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Artritis Experimental/inmunología , Células Cultivadas , Humanos , Interleucinas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA