Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Chem ; 66(15): 10528-10557, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463500

RESUMEN

Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-ß-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-ß-induced pulmonary fibrosis.


Asunto(s)
Inhibidores de Histona Desacetilasas , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Factor de Crecimiento Transformador beta , Histona Desacetilasas/uso terapéutico , Evaluación Preclínica de Medicamentos , Células CACO-2 , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Histona Desacetilasa 6 , Proteínas Represoras
2.
Biomedicines ; 10(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36009539

RESUMEN

The failure of peripheral nerve regeneration is often associated with the inability to generate a permissive molecular and cellular microenvironment for nerve repair. Autologous therapies, such as platelet-rich plasma (PRP) or its derivative platelet-rich growth factors (PRGF), may improve peripheral nerve regeneration via unknown mechanistic roles and actions in macrophage polarization. In the current study, we hypothesize that excessive and prolonged inflammation might result in the failure of pro-inflammatory M1 macrophage transit to anti-inflammatory M2 macrophages in large nerve defects. PRGF was used in vitro at the time the unpolarized macrophages (M0) macrophages were induced to M1 macrophages to observe if PRGF altered the secretion of cytokines and resulted in a phenotypic change. PRGF was also employed in the nerve conduit of a rat sciatic nerve transection model to identify alterations in macrophages that might influence excessive inflammation and nerve regeneration. PRGF administration reduced the mRNA expression of tumor necrosis factor-α (TNFα), interleukin-1ß (IL-1ß), and IL-6 in M0 macrophages. Increased CD206 substantiated the shift of pro-inflammatory cytokines to the M2 regenerative macrophage. Administration of PRGF in the nerve conduit after rat sciatic nerve transection promoted nerve regeneration by improving nerve gross morphology and its targeted gastrocnemius muscle mass. The regenerative markers were increased for regrown axons (protein gene product, PGP9.5), Schwann cells (S100ß), and myelin basic protein (MBP) after 6 weeks of injury. The decreased expression of TNFα, IL-1ß, IL-6, and CD68+ M1 macrophages indicated that the inflammatory microenvironments were reduced in the PRGF-treated nerve tissue. The increase in RECA-positive cells suggested the PRGF also promoted angiogenesis during nerve regeneration. Taken together, these results indicate the potential role and clinical implication of autologous PRGF in regulating inflammatory microenvironments via macrophage polarization after nerve transection.

3.
J Neuroinflammation ; 18(1): 238, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34656124

RESUMEN

BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.


Asunto(s)
Axones/metabolismo , Histona Desacetilasas/metabolismo , FN-kappa B/metabolismo , Regeneración Nerviosa/fisiología , Fenilbutiratos/farmacología , Remielinización/fisiología , Animales , Axones/efectos de los fármacos , Axones/patología , Línea Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Masculino , FN-kappa B/antagonistas & inhibidores , Regeneración Nerviosa/efectos de los fármacos , Fenilbutiratos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Remielinización/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/patología , Neuropatía Ciática , Células THP-1
4.
Biomedicines ; 9(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068021

RESUMEN

Placental mesenchymal dysplasia (PMD) and partial hydatidiform mole (PHM) placentas share similar characteristics, such as placental overgrowth and grape-like placental tissues. Distinguishing PMD from PHM is critical because the former can result in normal birth, while the latter diagnosis will lead to artificial abortion. Aneuploidy and altered dosage of imprinted gene expression are implicated in the pathogenesis of PHM and also some of the PMD cases. Diandric triploidy is the main cause of PHM, whereas mosaic diploid androgenetic cells in the placental tissue have been associated with the formation of PMD. Here, we report a very special PMD case also presenting with trophoblast hyperplasia phenotype, which is a hallmark of PHM. This PMD placenta has a normal biparental diploid karyotype and is functionally sufficient to support normal fetal growth. We took advantage of this unique case to further dissected the potential common etiology between these two diseases. We show that the differentially methylated region (DMR) at NESP55, a secondary DMR residing in the GNAS locus, is significantly hypermethylated in the PMD placenta. Furthermore, we found heterozygous mutations in NLRP2 and homozygous variants in NLRP7 in the mother's genome. NLRP2 and NLRP7 are known maternal effect genes, and their mutation in pregnant females affects fetal development. The variants/mutations in both genes have been associated with imprinting defects in mole formation and potentially contributed to the mild abnormal imprinting observed in this case. Finally, we identified heterozygous mutations in the X-linked ATRX gene, a known maternal-zygotic imprinting regulator in the patient. Overall, our study demonstrates that PMD and PHM may share overlapping etiologies with the defective/relaxed dosage control of imprinted genes, representing two extreme ends of a spectrum.

5.
Front Cell Dev Biol ; 9: 615098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718357

RESUMEN

Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.

6.
Elife ; 72018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311912

RESUMEN

The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes.


When a gene is active, its DNA sequence is 'transcribed' to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos.Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons.There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.


Asunto(s)
Linaje de la Célula , Sitios Genéticos , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Mitosis , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Linaje de la Célula/genética , Núcleo Celular/metabolismo , Vértebras Cervicales/inervación , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Mitosis/genética , Mutación/genética , Fenotipo , ARN Largo no Codificante/genética
7.
PLoS One ; 12(8): e0184111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28854282

RESUMEN

Mesenchymal stem cells (MSCs) hold great potential in cell therapies by virtue of the regenerative effects and immunomodulatory properties, but the scarce nature of MSCs makes ex vivo expansion indispensable prior to transplantation purposes. However, potential loss of stemness ensuing culture expansion has hindered the advancements in MSCs-based treatments. In principle, stemness could be preserved by reconstructing the stem cell niche. To test whether the endothelial cells (ECs) participate in the constitution of the stem cell niche for mesenchymal stem cells (MSCs), ECs derivatives including extracellular matrix (ECM) and conditioned medium (CM) prepared from aortic endothelial cells (AECs) and Mile Sven 1 endothelial cell line (MS1) were investigated for the potential to maintain MSCs stemness. MSCs expanded on endothelial ECMs, especially on MS1-ECM, possessed a more juvenile morphology and showed delayed proliferation, when compared with untreated MSCs and MSCs on MSC-ECM and in CMs. Once induced, MS1-ECM group showed better tri-lineage differentiations indicating that MS1-ECM could better preserve MSC stemness. MSCs on MS1-ECM showed stronger immune-modulatory potential and had significantly higher H3K27me3 with lower Kdm6b expression. Taken together, MS1-ECM shapes an inhibitory chromatin signature and retains MSCs stemness. Our work provided supportive evidence that MSCs can reside in a perivascular niche, and a feasible novel approach for MSCs expansion.


Asunto(s)
Células Endoteliales/citología , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Adipogénesis , Animales , Proliferación Celular , Células Cultivadas , Condrogénesis , Técnicas de Cocultivo/métodos , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos ICR , Osteogénesis
8.
Stem Cell Res Ther ; 6: 1, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559585

RESUMEN

INTRODUCTION: Pluripotent stem cells are increasingly used to build therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells (hESCs). Recently, long non-coding RNAs (lncRNAs), including delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (DLK1-DIO3) imprinted locus-derived maternally expressed gene 3 (MEG3), were found to be expressed during neural development. The deregulation of these lncRNAs is associated with various neurological diseases. The imprinted locus DLK1-DIO3 encodes abundant non-coding RNAs (ncRNAs) that are regulated by differential methylation of the locus. We aim to study the correlation between the DLK1-DIO3-derived ncRNAs and the capacity of hESCs to differentiate into neural lineages. METHODS: We classified hESC sublines into MEG3-ON and MEG3-OFF based on the expression levels of MEG3 and its downstream microRNAs as detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A cDNA microarray was used to analyze the gene expression profiles of hESCs. To investigate the capacity of neural differentiation in MEG3-ON and MEG3-OFF hESCs, we performed neural lineage differentiation followed by neural lineage marker expression and neurite formation analyses via qRT-PCR and immunocytochemistry, respectively. MEG3-knockdown via small interfering RNA (siRNA) and small hairpin RNA (shRNA) was used to investigate the potential causative effect of MEG3 in regulating neural lineage-related gene expression. RESULTS: DLK1-DIO3-derived ncRNAs were repressed in MEG3-OFF hESCs compared with those in the MEG3-ON hESCs. The transcriptome profile indicated that many genes related to nervous system development and neural-type tumors were differentially expressed in MEG3-OFF hESCs. Three independent MEG3-knockdown assays using different siRNA and shRNA constructs consistently resulted in downregulation of some neural lineage genes. Lower expression levels of stage-specific neural lineage markers and reduced neurite formation were observed in neural lineage-like cells derived from MEG3-OFF-associated hESCs compared with those in the MEG3-ON groups at the same time points after differentiation. CONCLUSIONS: Repression of ncRNAs derived from the DLK1-DIO3 imprinted locus is associated with reduced neural lineage differentiation potential in hESCs.


Asunto(s)
Impresión Genómica , Células Madre Embrionarias Humanas/metabolismo , Yoduro Peroxidasa/genética , Neuronas/metabolismo , ARN no Traducido/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Cuerpos Embrioides/metabolismo , Proteínas del Ojo/metabolismo , Sitios Genéticos , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Transcriptoma
9.
J Virol ; 88(18): 10680-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991018

RESUMEN

UNLABELLED: Mammalian genomes are replete with retrotransposable elements, including endogenous retroviruses. DNA methyltransferase 3-like (DNMT3L) is an epigenetic regulator expressed in prospermatogonia, growing oocytes, and embryonic stem (ES) cells. Here, we demonstrate that DNMT3L enhances the interaction of repressive epigenetic modifiers, including histone deacetylase 1 (HDAC1), SET domain, bifurcated 1 (SETDB1), DNA methyltransferase 3A (DNMT3A), and tripartite motif-containing protein 28 (TRIM28; also known as TIF1ß and KAP1) in ES cells and orchestrates retroviral silencing activity with TRIM28 through mechanisms including, but not limited to, de novo DNA methylation. Ectopic expression of DNMT3L in somatic cells causes methylation-independent retroviral silencing activity by recruitment of the TRIM28/HDAC1/SETDB1/DNMT3A/DNMT3L complex to newly integrated Moloney murine leukemia virus (Mo-MuLV) proviral DNA. Concurrent with this recruitment, we also observed the accumulation of histone H3 lysine 9 trimethylation (H3K9me3) and heterochromatin protein 1 gamma (HP1γ), as well as reduced H3K9 and H3K27 acetylation at Mo-MuLV proviral sequences. Ectopic expression of DNMT3L in late-passage mouse embryonic fibroblasts (MEFs) recruited cytoplasmically localized HDAC1 to the nucleus. The formation of this epigenetic modifying complex requires interaction of DNMT3L with DNMT3A as well as with histone H3. In fetal testes at embryonic day 17.5, endogenous DNMT3L also enhanced the binding among TRIM28, DNMT3A, SETDB1, and HDAC1. We propose that DNMT3L may be involved in initiating a cascade of repressive epigenetic modifications by assisting in the preparation of a chromatin context that further attracts DNMT3A-DNMT3L binding and installs longer-term DNA methylation marks at newly integrated retroviruses. IMPORTANCE: Almost half of the mammalian genome is composed of endogenous retroviruses and other retrotransposable elements that threaten genomic integrity. These elements are usually subject to epigenetic silencing. We discovered that two epigenetic regulators that lack enzymatic activity, DNA methyltransferase 3-like (DNMT3L) and tripartite motif-containing protein 28 (TRIM28), collaborate with each other to impose retroviral silencing. In addition to modulating de novo DNA methylation, we found that by interacting with TRIM28, DNMT3L can attract various enzymes to form a DNMT3L-induced repressive complex to remove active marks and add repressive marks to histone proteins. Collectively, these results reveal a novel and pivotal function of DNMT3L in shaping the chromatin modifications necessary for retroviral and retrotransposon silencing.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Silenciador del Gen , Leucemia Experimental/enzimología , Leucemia Experimental/genética , Virus de la Leucemia Murina de Moloney/fisiología , Proteínas Represoras/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Expresión Génica , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Humanos , Leucemia Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Virus de la Leucemia Murina de Moloney/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito
10.
Development ; 141(12): 2402-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24850856

RESUMEN

The ability of adult stem cells to reside in a quiescent state is crucial for preventing premature exhaustion of the stem cell pool. However, the intrinsic epigenetic factors that regulate spermatogonial stem cell quiescence are largely unknown. Here, we investigate in mice how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1(+) spermatogonial stem/progenitor cells (SPCs) constituted a DNMT3L-expressing population in postnatal testes. DNMT3L influenced the stability of promyelocytic leukemia zinc finger (PLZF), potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Reduced PLZF in Dnmt3l KO THY1(+) cells released its antagonist, Sal-like protein 4A (SALL4A), which is associated with overactivated ERK and AKT signaling cascades. Furthermore, DNMT3L was required to suppress the cell proliferation-promoting factor SALL4B in THY1(+) SPCs and to prevent premature stem cell exhaustion. Our results indicate that DNMT3L is required to delicately balance the cycling and quiescence of SPCs. These findings reveal a novel role for DNMT3L in modulating postnatal SPC cell fate decisions.


Asunto(s)
Células Madre Adultas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/fisiología , Regulación del Desarrollo de la Expresión Génica , Espermatogonias/metabolismo , Alelos , Animales , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Heterocigoto , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc
11.
J Biomed Sci ; 21: 21, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24624965

RESUMEN

BACKGROUND: Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs. RESULTS: Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo-differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling. CONCLUSIONS: Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Glucuronidasa/biosíntesis , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre/genética , Animales , Células de la Médula Ósea/citología , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , Quimiocina CXCL12/biosíntesis , Glucuronidasa/antagonistas & inhibidores , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Células Madre Multipotentes , Osteogénesis/genética , Transducción de Señal/genética
12.
Biol Cell ; 104(10): 571-87, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22671959

RESUMEN

DNA methyltransferase 3-like (DNMT3L) is one of the key players in de novo DNA methylation of imprinting control elements and retrotransposons, which occurs after genome-wide epigenetic erasure during germ cell development. In this review, we summarise the biochemical properties of DNMT3L and discuss the possible mechanisms behind DNMT3L-mediated imprinting establishment and retrotransposon silencing in germ cells. We also discuss possible connections between DNMT3L and non-coding RNA-mediated epigenetic remodelling, the roles of DNMT3L in germ cell development and the implications in stem cell and cancer research.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Genoma , Células Germinativas/enzimología , Retroelementos/genética , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Impresión Genómica , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Neoplasias/enzimología , Neoplasias/patología , Células Madre/citología , Células Madre/enzimología
13.
PLoS One ; 7(4): e36085, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558340

RESUMEN

BACKGROUND: While bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities.


Asunto(s)
Separación Celular/métodos , Epífisis/citología , Células Madre Mesenquimatosas/citología , Animales , Antiinflamatorios/metabolismo , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Extremidades/irrigación sanguínea , Curación de Fractura/efectos de los fármacos , Fracturas Óseas/patología , Fracturas Óseas/terapia , Tolerancia Inmunológica/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Interferón gamma/farmacología , Isquemia/patología , Isquemia/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Biológicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Necrosis
14.
J Nutr Biochem ; 23(12): 1609-16, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22444500

RESUMEN

Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, has previously been shown to ameliorate obesity-associated metabolic syndrome. To decipher the mechanism responsible for the beneficial effects of DHA on energy/glucose homeostasis and the metabolic syndrome, 30 weaned cross-bred pigs were randomly assigned to three groups and fed ad libitum with a standard diet supplemented with 2% of beef tallow, soybean oil or DHA oil for 30 days, and the gene expression profile of various tissues was evaluated by quantitative real-time polymerase chain reaction. The DHA-supplemented diets reduced the expression of forkhead box O transcription factor (FoxO) 1 and FoxO3 in the liver and adipose tissue. DHA treatments also decreased the expression of FoxO1 and FoxO3 in human hepatoma cells, SK-HEP-1 and human and porcine primary adipocytes. In addition, DHA also down-regulated FoxO target genes, such as microsomal triacylglycerol transfer protein (MTP), glucose-6-phosphatase, apolipoprotein C-III (apoC-III) and insulin-like growth factor binding-protein 1 in the liver, as well as reduced total plasma levels of cholesterol and triacylglycerol in the pig. Transcriptional suppression of FoxO1, FoxO3, apoC-III and MTP by DHA was further confirmed by reporter assays with each promoter construct. Taken together, our study indicates that DHA modulates lipid and glucose homeostasis in part by down-regulating FoxO function. The down-regulation of genes associated with triacylglycerol metabolism and very low density lipoprotein assembly is likely to contribute to the beneficial effects of DHA on the metabolic syndrome.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/genética , Adipocitos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Colesterol/sangre , Suplementos Dietéticos , Femenino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos/genética , Triglicéridos/sangre , Triglicéridos/metabolismo
15.
J Biol Chem ; 287(18): 14389-401, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22396540

RESUMEN

The establishment of an effective germ cell selection/enrichment platform from in vitro differentiating human embryonic stem cells (hESCs) is crucial for studying the molecular and signaling processes governing human germ cell specification and development. In this study, we developed a germ cell-enriching system that enables us to identify signaling factors involved in germ cell-fate induction from differentiating hESCs in vitro. First, we demonstrated that selection through an OCT4-EGFP reporter system can successfully increase the percentage of meiotic-competent, germ cell-like cells from spontaneously differentiating hESCs. Furthermore, we showed that the pluripotency associated surface marker, epithelial cell adhesion molecule (EpCAM), is also expressed in human fetal gonads and can be used as an effective selection marker for germ cell enrichment from differentiating hESCs. Combining OCT4 and EpCAM selection can further enrich the meiotic-competent germ cell-like cell population. Also, with the percentage of OCT4(+)/EpCAM(+) cells as readout, we demonstrated the synergistic effect of BMP4/pSMAD1/5/8 and WNT3A/ß-CATENIN in promoting hESCs toward the germline fate. Combining BMP4/WNT3A induction and OCT4/EpCAM selection can significantly increase the putative germ cell population with meiotic competency. Co-transplantation of these cells with dissociated mouse neonatal ovary cells into SCID mice resulted in a homogenous germ cell cluster formation in vivo. The stepwise platform established in this study provides a useful tool to elucidate the molecular mechanisms of human germ cell development, which has implications not only for human fertility research but regenerative medicine in general.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Proteína Morfogenética Ósea 4/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Germinativas/metabolismo , Meiosis/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt3A/metabolismo , Animales , Antígenos de Neoplasias/genética , Proteína Morfogenética Ósea 4/genética , Moléculas de Adhesión Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Molécula de Adhesión Celular Epitelial , Femenino , Células Germinativas/citología , Humanos , Ratones , Ratones SCID , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Trasplante Heterólogo , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
16.
Biomed Microdevices ; 13(3): 517-26, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21347824

RESUMEN

We design a microfluidic patterned co-culture system for mouse mesenchymal stem cells (mMSCs) and neural cells to demonstrate the paracrine effects produced by the neural cells in facilitating the transdifferentiation from mMSCs to neuron-like cells. Neural cells and mMSC are orderly patterned in the microfluidic co-culturing system without direct cell contact. This configuration provides us to calculate the percentage of neural marker transdifferentiated by mMSCs easily. We obtain higher transdifferentiated ratio of mMSC in the microfluidic co-culturing system (beta III tubulin: 67%; glial fibrillary acidic protein (GFAP): 86.2%) as compared with the traditional transwell co-culturing system (beta III tubulin: 59.8%; GFAP: 52.0%), which is similar to the spontaneous neural marker expression in the undifferentiated MSCs (beta III tubulin: 47.5%; GFAP: 60.1%). Furthermore, mMSCs expressing green fluorescent protein and neural cells expressing red fluorescent protein were also used in our co-culture system to demonstrate the rarely occurring or observed cell fusion phenomenon. The results show that the co-cultured neural cells increased the transdifferentiation efficiency of mMSCs from soluble factors secreted by neural cells.


Asunto(s)
Transdiferenciación Celular , Técnicas de Cocultivo/instrumentación , Células Madre Mesenquimatosas/citología , Técnicas Analíticas Microfluídicas/instrumentación , Neuronas/citología , Animales , Biomarcadores/metabolismo , Comunicación Celular , Fusión Celular , Regulación de la Expresión Génica , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo
17.
Tissue Eng Part A ; 16(9): 2901-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20533883

RESUMEN

Hypoxic environment is theoretically more physiological for the growth of human embryonic stem (hES) cells. It has been reported that hypoxic culture maintained better undifferentiation of hES cells, but the effects on differentiation are less well established. The hES cells were thus cultured and compared in hypoxia (2% oxygen [O2]) and normoxia (21% O2). The data showed that the undifferentiated state of hES cells was maintained more favorably in hypoxia during prolonged culture. Most tested genes belonging to FGF, TGF-beta/GMP, and Wnt signaling pathways were enriched in undifferentiated hES cells and downregulated upon differentiation, accompanied with differential expression of FGFR1, FGFR2, and FRAT2 between hypoxia and normoxia. Higher P-Smad2/3 level was identified in hypoxia, favoring the maintenance of hES cells in undifferentiation. Bisulfite sequencing showed similar imprinting status between different O2 tensions at H19 differentially methylated region (DMR) and KvDMR loci. Embryoid body formation was enhanced in hypoxia accompanied with suppressed Sox17, Desmin, Gata4, Brachyury, and Cdx2 expression. We concluded that hypoxia improved self-renewal of hES cells through modulation of major signaling pathways and was also more efficient for differentiation to embryoid bodies, though they might present with suppressed expression of some lineage-specific genes across all the three embryonic germ layers and trophectoderm.


Asunto(s)
Hipoxia de la Célula/fisiología , Cuerpos Embrioides/citología , Células Madre Embrionarias/citología , Western Blotting , Factor de Transcripción CDX2 , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Desmina/genética , Desmina/metabolismo , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reacción en Cadena de la Polimerasa , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Nature ; 448(7154): 714-7, 2007 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-17687327

RESUMEN

Mammals use DNA methylation for the heritable silencing of retrotransposons and imprinted genes and for the inactivation of the X chromosome in females. The establishment of patterns of DNA methylation during gametogenesis depends in part on DNMT3L, an enzymatically inactive regulatory factor that is related in sequence to the DNA methyltransferases DNMT3A and DNMT3B. The main proteins that interact in vivo with the product of an epitope-tagged allele of the endogenous Dnmt3L gene were identified by mass spectrometry as DNMT3A2, DNMT3B and the four core histones. Peptide interaction assays showed that DNMT3L specifically interacts with the extreme amino terminus of histone H3; this interaction was strongly inhibited by methylation at lysine 4 of histone H3 but was insensitive to modifications at other positions. Crystallographic studies of human DNMT3L showed that the protein has a carboxy-terminal methyltransferase-like domain and an N-terminal cysteine-rich domain. Cocrystallization of DNMT3L with the tail of histone H3 revealed that the tail bound to the cysteine-rich domain of DNMT3L, and substitution of key residues in the binding site eliminated the H3 tail-DNMT3L interaction. These data indicate that DNMT3L recognizes histone H3 tails that are unmethylated at lysine 4 and induces de novo DNA methylation by recruitment or activation of DNMT3A2.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Histonas/metabolismo , Lisina/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Madre Embrionarias/metabolismo , Histonas/química , Humanos , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA