Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Redox Biol ; 71: 103118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490069

RESUMEN

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Cistationina betasintasa/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Ferroptosis/genética , Cistina , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo
2.
Front Med ; 18(2): 375-393, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157196

RESUMEN

Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.


Asunto(s)
Liposarcoma , Neoplasias Retroperitoneales , Humanos , Neoplasias Retroperitoneales/metabolismo , Liposarcoma/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Proteómica , Metabolómica , Anciano , Metaboloma , Adulto , Multiómica
3.
Cell Rep ; 42(5): 112471, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37149865

RESUMEN

T helper type 2 (Th2) cytokine-activated M2 macrophages contribute to inflammation resolution and wound healing. This study shows that IL-4-primed macrophages exhibit a stronger response to lipopolysaccharide stimulation while maintaining M2 signature gene expression. Metabolic divergence between canonical M2 and non-canonical proinflammatory-prone M2 (M2INF) macrophages occurs after the IL-4Rα/Stat6 axis. Glycolysis supports Hif-1α stabilization and proinflammatory phenotype of M2INF macrophages. Inhibiting glycolysis blunts Hif-1α accumulation and M2INF phenotype. Wdr5-dependent H3K4me3 mediates the long-lasting effect of IL-4, with Wdr5 knockdown inhibiting M2INF macrophages. Our results also show that the induction of M2INF macrophages by IL-4 intraperitoneal injection and transferring of M2INF macrophages confer a survival advantage against bacterial infection in vivo. In conclusion, our findings highlight the previously neglected non-canonical role of M2INF macrophages and broaden our understanding of IL-4-mediated physiological changes. These results have immediate implications for how Th2-skewed infections could redirect disease progression in response to pathogen infection.


Asunto(s)
Interleucina-4 , Macrófagos , Humanos , Interleucina-4/farmacología , Interleucina-4/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Glucólisis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
4.
Acta Pharm Sin B ; 13(1): 157-173, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815049

RESUMEN

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

6.
Virulence ; 13(1): 1407-1422, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35993169

RESUMEN

As obligate intracellular parasites, viruses rely completely on host metabolic machinery and hijack host nutrients for viral replication. Newcastle disease virus (NDV) causes acute, highly contagious avian disease and functions as an oncolytic agent. NDV efficiently replicates in both chicken and tumour cells. However, how NDV reprograms host cellular metabolism for its efficient replication is still ill-defined. We previously identified a significantly upregulated glutamate transporter gene, solute carrier family 1 member 3 (SLC1A3), during NDV infection via transcriptome analysis. To investigate the potential role of SLC1A3 during NDV infection, we first confirmed the marked upregulation of SLC1A3 in NDV-infected DF-1 or A549 cells through p53 and NF-κB pathways. Knockdown of SLC1A3 inhibited NDV infection. Western blot analysis further confirmed that glutamine, but not glutamate, asparagine, or aspartate, was required for NDV replication. Metabolic flux data showed that NDV promotes the decomposition of glutamine into the tricarboxylic acid cycle. Importantly, the level of glutamate and glutaminolysis were reduced by SLC1A3 knockdown, indicating that SLC1A3 propelled glutaminolysis for glutamate utilization and NDV replication in host cells. Taken together, our data identify that SLC1A3 serves as an important regulator for glutamine metabolism and is hijacked by NDV for its efficient replication during NDV infection. These results improve our understanding of the interaction between NDV and host cellular metabolism and lay the foundation for further investigation of efficient vaccines.


Asunto(s)
Glutamina , Virus de la Enfermedad de Newcastle , Células A549 , Animales , Pollos , Glutamina/metabolismo , Humanos , Virus de la Enfermedad de Newcastle/genética , Replicación Viral
7.
Proc Natl Acad Sci U S A ; 119(34): e2117089119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943976

RESUMEN

The COVID-19 pandemic has incurred tremendous costs worldwide and is still threatening public health in the "new normal." The association between neutralizing antibody levels and metabolic alterations in convalescent patients with COVID-19 is still poorly understood. In the present work, we conducted absolutely quantitative profiling to compare the plasma cytokines and metabolome of ordinary convalescent patients with antibodies (CA), convalescents with rapidly faded antibodies (CO), and healthy subjects. As a result, we identified that cytokines such as M-CSF and IL-12p40 and plasma metabolites such as glycylproline (gly-pro) and long-chain acylcarnitines could be associated with antibody fading in COVID-19 convalescent patients. Following feature selection, we built machine-learning-based classification models using 17 features (six cytokines and 11 metabolites). Overall accuracies of more than 90% were attained in at least six machine-learning models. Of note, the dipeptide gly-pro, a product of enzymatic peptide cleavage catalyzed by dipeptidyl peptidase 4 (DPP4), strongly accumulated in CO individuals compared with the CA group. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination experiments in healthy mice demonstrated that supplementation of gly-pro down-regulates SARS-CoV-2-specific receptor-binding domain antibody levels and suppresses immune responses, whereas the DPP4 inhibitor sitagliptin can counteract the inhibitory effects of gly-pro upon SARS-CoV-2 vaccination. Our findings not only reveal the important role of gly-pro in the immune responses to SARS-CoV-2 infection but also indicate a possible mechanism underlying the beneficial outcomes of treatment with DPP4 inhibitors in convalescent COVID-19 patients, shedding light on therapeutic and vaccination strategies against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Convalecencia , Citocinas , Dipéptidos , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , COVID-19/sangre , COVID-19/inmunología , Citocinas/sangre , Dipéptidos/sangre , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos , Aprendizaje Automático , Metaboloma , Ratones , SARS-CoV-2 , Vacunación
8.
Cell Res ; 32(7): 638-658, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459936

RESUMEN

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores , Isocitrato Deshidrogenasa , Neoplasias , Animales , Células Endoteliales/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutaratos , Isocitrato Deshidrogenasa/genética , Ratones , Mitocondrias/metabolismo , Mutación , Microambiente Tumoral
9.
Nat Cancer ; 3(5): 614-628, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35449308

RESUMEN

Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Línea Celular Tumoral , Farnesiltransferasa/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Mevalónico/farmacología , Fosfatos de Poliisoprenilo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
10.
Sci Signal ; 15(721): eabi9983, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167340

RESUMEN

To perform their antiviral and antitumor functions, T cells must integrate signals both from the T cell receptor (TCR), which instruct the cell to remain quiescent or become activated, and from cytokines that guide cellular proliferation and differentiation. In mature CD8+ T cells, Themis has been implicated in integrating TCR and cytokine signals. We investigated whether Themis plays a direct role in cytokine signaling in mature T cells. Themis was required for IL-2- and IL-15-driven CD8+ T cell proliferation both in mice and in vitro. Mechanistically, we found that Themis promoted the activation of the transcription factor Stat and mechanistic target of rapamycin signaling downstream of cytokine receptors. Metabolomics and stable isotope tracing analyses revealed that Themis deficiency reduced glycolysis and serine and nucleotide biosynthesis, demonstrating a receptor-proximal requirement for Themis in triggering the metabolic changes that enable T cell proliferation. The cellular, metabolic, and biochemical defects caused by Themis deficiency were corrected in mice lacking both Themis and the phosphatase Shp1, suggesting that Themis mediates IL-2 and IL-15 receptor-proximal signaling by restraining the activity of Shp1. Together, these results not only shed light on the mechanisms of cytokine signaling but also provide new clues on manipulating T cells for clinical applications.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-2 , Animales , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular , Interleucina-15/genética , Interleucina-2/genética , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
11.
Cell Res ; 32(1): 54-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561619

RESUMEN

The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucosa , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/genética
12.
Autophagy ; 18(7): 1503-1521, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34720029

RESUMEN

Lacking a self-contained metabolism network, viruses have evolved multiple mechanisms for rewiring the metabolic system of their host to hijack the host's metabolic resources for replication. Newcastle disease virus (NDV) is a paramyxovirus, as an oncolytic virus currently being developed for cancer treatment. However, how NDV alters cellular metabolism is still far from fully understood. In this study, we show that NDV infection reprograms cell metabolism by increasing glucose utilization in the glycolytic pathway. Mechanistically, NDV induces mitochondrial damage, elevated mitochondrial reactive oxygen species (mROS) and ETC dysfunction. Infection of cells depletes nucleotide triphosphate levels, resulting in elevated AMP:ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and MTOR crosstalk mediated autophagy. In a time-dependent manner, NDV shifts the balance of mitochondrial dynamics from fusion to fission. Subsequently, PINK1-PRKN-dependent mitophagy was activated, forming a ubiquitin chain with MFN2 (mitofusin 2), and molecular receptor SQSTM1/p62 recognized damaged mitochondria. We also found that NDV infection induces NAD+-dependent deacetylase SIRT3 loss via mitophagy to engender HIF1A stabilization, leading to the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Overall, these studies support a model that NDV modulates host cell metabolism through PINK1-PRKN-dependent mitophagy for degrading SIRT3.Abbreviations: AMPK: AMP-activated protein kinase; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECAR: extracellular acidification rate; hpi: hours post infection LC-MS: liquid chromatography-mass spectrometry; mito-QC: mCherry-GFP-FIS1[mt101-152]; MFN2: mitofusin 2; MMP: mitochondrial membrane potential; mROS: mitochondrial reactive oxygen species; MOI: multiplicity of infection; 2-NBDG: 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose; NDV: newcastle disease virus; OCR: oxygen consumption rate; siRNA: small interfering RNA; SIRT3: sirtuin 3; TCA: tricarboxylic acid; TCID50: tissue culture infective doses.


Asunto(s)
Mitofagia , Sirtuina 3 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Metabolismo Energético , Mitofagia/genética , Virus de la Enfermedad de Newcastle/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Sci Adv ; 7(49): eabk0490, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860557

RESUMEN

Early-activated CD8+ T cells increase both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). However, whether and how the augmentation of OXPHOS regulates differentiation of effector CD8+ T cell remains unclear. Here, we found that C1qbp was intrinsically required for such differentiation in antiviral and antitumor immune responses. Activated C1qbp-deficient CD8+ T cells failed to increase mitochondrial respiratory capacities, resulting in diminished acetyl­coenzyme A as well as elevated fumarate and 2-hydroxyglutarate. Consequently, hypoacetylation of H3K27 and hypermethylation of H3K27 and CpG sites were associated with transcriptional down-regulation of effector signature genes. The effector differentiation of C1qbp-sufficient or C1qbp-deficient CD8+ T cells was reversed by fumarate or a combination of histone deacetylase inhibitor and acetate. Therefore, these findings identify C1qbp as a pivotal positive regulator in the differentiation of effector CD8+ T cells and highlight a metabolic-epigenetic axis in this process.

14.
Cell ; 184(22): 5559-5576.e19, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34678143

RESUMEN

Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Glucógeno/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa-6-Fosfatasa/metabolismo , Glucógeno Fosforilasa/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Vía de Señalización Hippo , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estadificación de Neoplasias , Transición de Fase , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasa 3/metabolismo , Proteínas Señalizadoras YAP/metabolismo
15.
J Hematol Oncol ; 14(1): 153, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563230

RESUMEN

The 3-hydroxyanthranilic acid (3-HAA), a derivative of kynurenine, was reported to suppress tumor growth. However, the function of 3-HAA largely remains unclear. Here, we report that 3-hydroxyanthranilic acid (3-HAA) is lower in tumor cells, while adding exogenous 3-HAA induces apoptosis in hepatocellular carcinoma by binding YY1. This 3-HAA binding of YY1 leads to phosphorylation of YY1 at the Thr 398 by PKCζ, concomitantly enhances YY1 chromatin binding activity to increase expression of target genes. These findings demonstrate that 3-HAA is a ligand of YY1, suggesting it is a promising therapeutic candidate for HCC.


Asunto(s)
Ácido 3-Hidroxiantranílico/farmacología , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Quinurenina/análogos & derivados , Neoplasias Hepáticas/tratamiento farmacológico , Factor de Transcripción YY1/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Quinurenina/farmacología , Ligandos , Neoplasias Hepáticas/metabolismo
16.
Nat Immunol ; 22(9): 1175-1185, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34429546

RESUMEN

Systematic characterizations of adipose regulatory T (Treg) cell subsets and their phenotypes remain uncommon. Using single-cell ATAC-sequencing and paired single-cell RNA and T cell receptor (TCR) sequencing to map mouse adipose Treg cells, we identified CD73hiST2lo and CD73loST2hi subsets with distinct clonal expansion patterns. Analysis of TCR-sharing data implied a state transition between CD73hiST2lo and CD73loST2hi subsets. Mechanistically, we revealed that insulin signaling occurs through a HIF-1α-Med23-PPAR-γ axis to drive the transition of CD73hiST2lo into a CD73loST2hi adipose Treg cell subset. Treg cells deficient in insulin receptor, HIF-1α or Med23 have decreased PPAR-γ expression that in turn promotes accumulation of CD73hiST2lo adipose Treg cells and physiological adenosine production to activate beige fat biogenesis. We therefore unveiled a developmental trajectory of adipose Treg cells and its dependence on insulin signaling. Our findings have implications for understanding the dynamics of adipose Treg cell subsets in aged and obese contexts.


Asunto(s)
Tejido Adiposo/inmunología , Resistencia a la Insulina/inmunología , Insulina/metabolismo , Receptor de Insulina/metabolismo , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Tejido Adiposo/citología , Envejecimiento/inmunología , Animales , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Masculino , Complejo Mediador/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/inmunología , PPAR gamma/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/citología
17.
Nat Commun ; 12(1): 2537, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953170

RESUMEN

Metastasis accounts for 90% of cancer-related deaths and, currently, there are no effective clinical therapies to block the metastatic cascade. A need to develop novel therapies specifically targeting fundamental metastasis processes remains urgent. Here, we demonstrate that Salmonella YB1, an engineered oxygen-sensitive strain, potently inhibits metastasis of a broad range of cancers. This process requires both IFN-γ and NK cells, as the absence of IFN-γ greatly reduces, whilst depletion of NK cells in vivo completely abolishes, the anti-metastatic ability of Salmonella. Mechanistically, we find that IFN-γ is mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promotes the accumulation, activation, and cytotoxicity of NK cells, which kill the metastatic cancer cells thus achieving an anti-metastatic effect. Our findings highlight the significance of a self-regulatory feedback loop of NK cells in inhibiting metastasis, pointing a possible approach to develop anti-metastatic therapies by harnessing the power of NK cells.


Asunto(s)
Interferón gamma/metabolismo , Interferón gamma/farmacología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Metástasis de la Neoplasia/inmunología , Infecciones por Salmonella/metabolismo , Salmonella/genética , Animales , Citocinas/metabolismo , Femenino , Inmunidad Innata , Inmunoterapia/métodos , Interferón gamma/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Infecciones por Salmonella/tratamiento farmacológico
18.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33991485

RESUMEN

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Glutaminasa/genética , Neoplasias Pancreáticas/genética , Succinato-CoA Ligasas/genética , Animales , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/mortalidad , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glutaminasa/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , NADP/metabolismo , Estrés Oxidativo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/mortalidad , Fosforilación , Pronóstico , Procesamiento Proteico-Postraduccional , Transducción de Señal , Succinato-CoA Ligasas/metabolismo , Ácido Succínico/metabolismo , Análisis de Supervivencia , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cancer Res ; 81(3): 552-566, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229341

RESUMEN

Cancer cells need to generate large amounts of glutathione (GSH) to buffer oxidative stress during tumor development. A rate-limiting step for GSH biosynthesis is cystine uptake via a cystine/glutamate antiporter Xc-. Xc- is a sodium-independent antiporter passively driven by concentration gradients from extracellular cystine and intracellular glutamate across the cell membrane. Increased uptake of cystine via Xc- in cancer cells increases the level of extracellular glutamate, which would subsequently restrain cystine uptake via Xc-. Cancer cells must therefore evolve a mechanism to overcome this negative feedback regulation. In this study, we report that glutamate transporters, in particular SLC1A1, are tightly intertwined with cystine uptake and GSH biosynthesis in lung cancer cells. Dysregulated SLC1A1, a sodium-dependent glutamate carrier, actively recycled extracellular glutamate into cells, which enhanced the efficiency of cystine uptake via Xc- and GSH biosynthesis as measured by stable isotope-assisted metabolomics. Conversely, depletion of glutamate transporter SLC1A1 increased extracellular glutamate, which inhibited cystine uptake, blocked GSH synthesis, and induced oxidative stress-mediated cell death or growth inhibition. Moreover, glutamate transporters were frequently upregulated in tissue samples of patients with non-small cell lung cancer. Taken together, active uptake of glutamate via SLC1A1 propels cystine uptake via Xc- for GSH biosynthesis in lung tumorigenesis. SIGNIFICANCE: Cellular GSH in cancer cells is not only determined by upregulated Xc- but also by dysregulated glutamate transporters, which provide additional targets for therapeutic intervention.


Asunto(s)
Cistina/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Glutatión/biosíntesis , Neoplasias Pulmonares/metabolismo , Animales , Antiportadores/metabolismo , Muerte Celular , Línea Celular Tumoral , Glutamina/deficiencia , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Estrés Oxidativo , Receptores Acoplados a Proteínas G , Estrés Fisiológico , Regulación hacia Arriba
20.
Blood ; 136(5): 553-571, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32396938

RESUMEN

The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We generated a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there are 3 distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells had an enhanced level of mitochondrial respiration but a glycolytic level similar to that of SoNar-high cells. Interestingly, 10% of SoNar-low cells were enriched for 65% of total immunophenotypic fetal liver HSCs (FL-HSCs) and contained approximately fivefold more functional HSCs than their SoNar-high counterparts. SoNar was able to monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivated MDH1 to sustain the malate-aspartate NADH shuttle activity and HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Metabolómica/métodos , Imagen Óptica/métodos , Animales , Ácido Aspártico/metabolismo , Feto , Células Madre Hematopoyéticas/citología , Hígado/citología , Malatos/metabolismo , Ratones , Ratones Transgénicos , NAD/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA