Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Ethnopharmacol ; 335: 118658, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103023

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yunnan Baiyao (YB), a traditional herbal formulation, has been used for over a century to manage bleeding and enhance blood circulation. Its ingredients are widely recognized for their anti-cancer properties. However, its impact on glioma, the most common primary malignant tumor of the central nervous system, remains unexplored. AIM OF THE STUDY: This study aims to investigate the anti-glioma activity of YB in vitro and in vivo, and to elucidate the underlying mechanism of action. METHODS: U-87 MG cells were treated with YB and subjected to cell proliferation assay, colony formation assay, and flow cytometry with Annexin V/PI staining to confirm anti-glioma activity. The induction of necroptosis and autophagy was confirmed through live-cell imaging, western blotting, and immunofluorescence analysis. The role of apoptosis, necroptosis, autophagy, and AMPK was validated using specific inhibitors. The in vivo anti-glioma activity of YB was evaluated using subcutaneous and orthotopic xenograft models in nude mice and chemically induced glioma rat models. RESULTS: YB induced necroptotic rather than apoptotic cell death in glioma U-87 MG cells, as evidenced by increased phosphorylated MLKL levels and plasma membrane disruptions. Rescue experiments further confirmed the role of necroptosis. Importantly, YB-triggered necroptosis was found to be dependent on autophagy induction, which relies on the AMPK signaling pathway. In line with these findings, YB demonstrated significant anti-glioma activity in vivo. CONCLUSIONS: Our study reveals that YB exerts potent anti-glioma effects both in vitro and in vivo through the induction of autophagy-dependent necroptosis.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Glioma , Ratones Desnudos , Necroptosis , Animales , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Autofagia/efectos de los fármacos , Humanos , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Necroptosis/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Ratas , Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos
2.
Curr Med Sci ; 44(4): 833-840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38967889

RESUMEN

OBJECTIVE: Colorectal cancer (CRC), a prevalent malignancy worldwide, has prompted extensive research into anticancer drugs. Traditional Chinese medicinal materials offer promising avenues for cancer management due to their diverse pharmacological activities. This study investigated the effects of Notopterygium incisum, a traditional Chinese medicine named Qianghuo (QH), on CRC cells and the underlying mechanism. METHODS: The sulforhodamine B assay and colony formation assay were employed to assess the effect of QH extract on the proliferation of CRC cell lines HCT116 and Caco-2. Propidium iodide (PI) staining was utilized to detect cell cycle progression, and PE Annexin V staining to detect apoptosis. Western blotting was conducted to examine the levels of apoptotic proteins, including B-cell lymphoma 2-interacting mediator of cell death (BIM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (BAX) and cleaved caspase-3, as well as BIM stability after treatment with the protein synthesis inhibitor cycloheximide. The expression of BAX was suppressed using lentivirus-mediated shRNA to validate the involvement of the BIM/BAX axis in QH-induced apoptosis. The in vivo effects of QH extract on tumor growth were observed using a xenograft model. Lastly, APCMin+ mice were used to study the effects of QH extract on primary intestinal tumors. RESULTS: QH extract exhibited significant in vitro anti-CRC activities evidenced by the inhibition of cell proliferation, perturbation of cell cycle progression, and induction of apoptosis. Mechanistically, QH extract significantly increased the stability of BIM proteins, which undergo rapid degradation under unstressed conditions. Knockdown of BAX, the downstream effector of BIM, significantly rescued QH-induced apoptosis. Furthermore, the in vitro effect of QH extract was recapitulated in vivo. QH extract significantly inhibited the tumor growth of HCT116 xenografts in nude mice and decreased the number of intestinal polyps in the APCMin+ mice. CONCLUSION: QH extract promotes the apoptosis of CRC cells by preventing the degradation of BIM.


Asunto(s)
Apiaceae , Apoptosis , Proteína 11 Similar a Bcl2 , Proliferación Celular , Neoplasias Colorrectales , Humanos , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Animales , Apoptosis/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Células HCT116 , Apiaceae/química , Ensayos Antitumor por Modelo de Xenoinjerto , Células CACO-2 , Extractos Vegetales/farmacología , Proteolisis/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Medicamentos Herbarios Chinos/farmacología , Ratones Desnudos
3.
Br J Pharmacol ; 181(21): 4262-4278, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38982680

RESUMEN

BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC. EXPERIMENTAL APPROACH: In this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I-targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine-induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model. KEY RESULTS: We demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models. CONCLUSION AND IMPLICATIONS: Altogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.


Asunto(s)
Antineoplásicos , Berberina , Proliferación Celular , Complejo I de Transporte de Electrón , Mitocondrias , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Berberina/farmacología , Berberina/análogos & derivados , Berberina/uso terapéutico , Animales , Humanos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Femenino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Antioxidants (Basel) ; 13(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38929118

RESUMEN

Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING) signaling pathway has been suggested to not only facilitate inflammatory responses and the production of type I interferons (IFN), but also activate other cellular processes, such as apoptosis. It has not been studied, however, whether cGAS-STING activation is involved in the apoptosis induced by statin treatment in human colorectal cancer cells. In this study, we reported that lovastatin impaired mitochondrial function, including the depolarization of mitochondrial membrane potential, reduction of oxygen consumption, mitochondrial DNA (mtDNA) integrity, and mtDNA abundance in human colorectal cancer HCT116 cells. The mitochondrial dysfunction markedly induced ROS production in mitochondria, whereas the defect in mitochondria respiration or depletion of mitochondria eliminated reactive oxygen species (ROS) production. The ROS-induced oxidative DNA damage by lovastatin treatment was attenuated by mitochondrial-targeted antioxidant mitoquinone (mitoQ). Upon DNA damage, mtDNA was released into the cytosol and bound to DNA sensor cGAS, thus activating the cGAS-STING signaling pathway to trigger a type I interferon response. This effect was not activated by nuclear DNA (nuDNA) or mitochondrial RNA, as the depletion of mitochondria compromised this effect, but not the knockdown of retinoic acid-inducible gene-1/melanoma differentiation-associated protein 5 (RIG-I/MDA5) adaptor or mitochondrial antiviral signaling protein (MAVS). Moreover, lovastatin-induced apoptosis was partly dependent on the cGAS-STING signaling pathway in HCT116 cells as the knockdown of cGAS or STING expression rescued cell viability and mitigated apoptosis. Similarly, the knockdown of cGAS or STING also attenuated the antitumor effect of lovastatin in the HCT116 xenograft model in vivo. Our findings suggest that lovastatin-induced apoptosis is at least partly mediated through the cGAS-STING signaling pathway by triggering mtDNA accumulation in the cytosol in human colorectal cancer HCT116 cells.

5.
J Ethnopharmacol ; 327: 118039, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479545

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The anti-tumor related diseases of Coptidis Rhizoma (Huanglian) were correlated with its traditional use of removing damp-heat, clearing internal fire, and counteracting toxicity. In the recent years, Coptidis Rhizoma and its components have drawn extensive attention toward their anti-tumor related diseases. Besides, Coptidis Rhizoma is traditionally used as an anti-inflammatory herb. Epiberberine (EPI) is a significant alkaloid isolated from Coptidis Rhizoma, and exhibits multiple pharmacological activities including anti-inflammatory. However, the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis has not been demonstrated clearly. AIM OF THE STUDY: Bone metastatic breast cancer can lead to osteolysis via inflammatory factors-induced osteoclast differentiation and function. In this study, we try to analyze the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis. METHODS: To evaluate whether epiberberine could suppress bone metastatic breast cancer-induced osteolytic damage, healthy female Balb/c mice were intratibially injected with murine triple-negative breast cancer 4T1 cells. Then, we examined the inhibitory effect and underlying mechanism of epiberberine on breast cancer-induced osteoclastogenesis in vitro. Xenograft assay was used to study the effect of epiberberine on breast cancer cells in vivo. Moreover, we also studied the inhibitory effects and underlying mechanisms of epiberberine on RANKL-induced osteoclast differentiation and function in vitro. RESULTS: The results show that epiberberine displayed potential therapeutic effects on breast cancer-induced osteolytic damage. Besides, our results show that epiberberine inhibited breast cancer cells-induced osteoclast differentiation and function by inhibiting secreted inflammatory cytokines such as IL-8. Importantly, we found that epiberberine directly inhibited RANKL-induced differentiation and function of osteoclast without cytotoxicity. Mechanistically, epiberberine inhibited RANKL-induced osteoclastogensis via Akt/c-Fos signaling pathway. Furthermore, epiberberine combined with docetaxel effectively protected against bone loss induced by metastatic breast cancer cells. CONCLUSIONS: Our findings suggested that epiberberine may be a promising natural compound for treating bone metastatic breast cancer-induced osteolytic damage by inhibiting IL-8 and is worthy of further exploration in preclinical and clinical trials.


Asunto(s)
Berberina/análogos & derivados , Neoplasias Óseas , Neoplasias de la Mama , Medicamentos Herbarios Chinos , Osteólisis , Humanos , Femenino , Animales , Ratones , Osteólisis/tratamiento farmacológico , Osteólisis/metabolismo , Osteólisis/patología , Neoplasias de la Mama/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/metabolismo , Interleucina-8/metabolismo , Osteoclastos , Osteogénesis , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Antiinflamatorios/farmacología , Ligando RANK/metabolismo
6.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338430

RESUMEN

(1) Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the second most common cause of cancer death. However, effective anti-CRC drugs are still lacking in clinical settings. This article investigated the anti-proliferative effect of involucrasin B on CRC Caco-2 cells. (2) Methods: This study employed a sulforhodamine B (SRB) method, colony formation experiments, flow cytometry, FastFUCCI assay, dual luciferase assay, and Western blot analysis for the investigation. (3) Results: The SRB method and colony formation experiments showed that involucrasin B exhibited an inhibitory effect on the Caco-2 cells cultured in vitro. Subsequently, the flow cytometry, FastFUCCI assay, and Western blotting results showed that involucrasin B induced cell cycle arrest in the G1 phase dose-dependently. Involucrasin B significantly enhanced the TGFß RII protein level and SMAD3 phosphorylation, thus inhibiting the expression of CDK4 and cyclin D1 and causing G1 cell cycle arrest. (4) Conclusion: This study shows that involucrasin B exerts its anti-proliferative effect by regulating the TGFß/SMAD2-3-4 pathway to cause G1 cycle arrest in Caco-2 cells.


Asunto(s)
Factor de Crecimiento Transformador beta , Humanos , Células CACO-2 , Fosforilación , Puntos de Control de la Fase G1 del Ciclo Celular , Proliferación Celular , Factor de Crecimiento Transformador beta/farmacología , Línea Celular Tumoral , Proteína Smad2
7.
Oncol Lett ; 25(6): 218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37153032

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide; however, there is still a lack of effective clinical anti-CRC agents. Naturally-occurring compounds have been considered a potentially valuable source of new antitumorigenic agents. Involucrasin A, a novel natural molecule, was isolated from Shuteria involucrata (Wall.) Wight & Arn by our team. In the present study, the anticancer activity of involucrasin A in HCT-116 CRC cells was evaluated. Firstly, the anti-proliferative effect of involucrasin A on HCT-116 cells was analyzed by sulforhodamine B and colony formation assays. The results revealed that involucrasin A exhibited a potent inhibitory effect on HCT-116 CRC cell proliferation in vitro. Subsequently, flow cytometry and western blotting indicated that involucrasin A induced apoptosis and upregulated the expression levels of apoptosis-related proteins, such as cleaved-caspase 6 and cleaved-caspase 9, in a dose-dependent manner. Mechanistically, involucrasin A significantly inhibited the phosphorylation of Akt and murine double minute 2 homologue (MDM2), which resulted in increased intracellular levels of p53. This was reversed by exogenous expression of the constitutively active form of Akt. Similarly, either knocking out p53 or knocking down Bax abrogated involucrasin A-induced proliferation inhibition and apoptosis. Together, the present study indicated that involucrasin A exerts antitumorigenic activities via modulating the Akt/MDM2/p53 pathway in HCT-116 CRC cells, and it is worthy of further exploration in preclinical and clinical trials.

9.
Phytomedicine ; 85: 153551, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33827043

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC), lacking targeted therapies currently, is susceptible to ferroptosis, a recently defined form of cell death. PURPOSE: To evaluate the anticancer activity of Shuganning injection (SGNI), a traditional Chinese patent medicine, on TNBC cells; To elucidate the mechanism of SGNI induced ferroptosis. METHODS: The anticancer activity of SGNI was examined via in vitro cell proliferation assays and in vivo xenograft growth assay. Ferroptosis was determined by flow-cytometric analysis of lipid ROS, labile iron pool measurement, and propidium iodide exclusion assay. The dependency on heme oxygenase 1 (HO-1) of SGNI induced ferroptosis was confirmed by genetic knockdown and pharmacological inhibition of the protein. RESULTS: SGNI selectively inhibited the proliferation of TNBC cells compared to non-TNBC breast cancer cells and normal cells. The cell death induced by SGNI in TNBC cells showed distinct morphology from apoptosis and could not be rescued by the pan-caspase inhibitor Z-VAD(OMe)-FMK. On the other hand, SGNI induced cell death was blocked by the lipid ROS scavengers ferrostatin-1 and liproxstatin-1, the acyl-CoA synthetase long chain family member 4 inhibitor rosiglitazone, and the iron chelators 1,10-phenanthroline and deferoxamine. These data indicated that SGNI induced a ferroptotic cell death of TNBC cells. Mechanistically, SGNI induced ferroptosis was dependent on HO-1, which promotes intracellular labile iron pool accumulation, and was alleviated by HO-1 knockdown and inhibition by tin protoporphyrin IX. In line with the in vitro data, SGNI significantly inhibited the xenograft growth of TNBC cell line MD-MB-231 in nude mice. CONCLUSION: Collectively, our study elaborates on a promising regimen for TNBC treatment through induction of ferroptosis by SGNI, a traditional Chinese patent medicine currently available in the clinic, which merits further investigation.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Ferroptosis/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hierro/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , China , Ciclohexilaminas , Femenino , Humanos , Peroxidación de Lípido , Medicina Tradicional China , Ratones , Ratones Desnudos , Fenilendiaminas , Quinoxalinas , Compuestos de Espiro , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochem Biophys Res Commun ; 551: 38-45, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33714758

RESUMEN

Isocitrate dehydrogenase 1 (IDH1) mutant R132H, promoting the oncometabolite D-2-hydroxyglutarate (D2HG), is a driver mutation and an emerging therapeutic target in glioma. This study identified a novel mutant IDH1 inhibitor, WM17, by virtual screening and enzymatic confirmation. It could bind to and increase mutant IDH1 protein's thermostability in both endogenous heterozygous cells and exogenous overexpressed cells. Consequently, WM17 reversed the accumulation of D2HG and histone hypermethylation in IDH1 mutated cells. Finally, we concluded that WM17 significantly inhibited cell migration in IDH1 mutated glioma cells, although it has no apparent effect on cell proliferation. Further studies are guaranteed toward the development of WM17 as a therapeutic agent for IDH1 mutated glioma.


Asunto(s)
Glioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Proteínas Mutantes/antagonistas & inhibidores , Mutación , Bencenoacetamidas/farmacología , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Glioma/enzimología , Glioma/genética , Glioma/patología , Histonas/metabolismo , Humanos , Imidazoles/farmacología , Metilación/efectos de los fármacos , Modelos Moleculares , Terapia Molecular Dirigida , Proteínas Mutantes/genética , Unión Proteica
11.
Acta Pharmacol Sin ; 42(11): 1875-1887, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33608672

RESUMEN

RAS-driven colorectal cancer relies on glucose metabolism to support uncontrolled growth. However, monotherapy with glycolysis inhibitors like 2-deoxy-D-glucose causes limited effectiveness. Recent studies suggest that anti-tumor effects of glycolysis inhibition could be improved by combination treatment with inhibitors of oxidative phosphorylation. In this study we investigated the effect of a combination of 2-deoxy-D-glucose with lovastatin (a known inhibitor of mevalonate pathway and oxidative phosphorylation) on growth of KRAS-mutant human colorectal cancer cell lines HCT116 and LoVo. A combination of lovastatin (>3.75 µM) and 2-deoxy-D-glucose (>1.25 mM) synergistically reduced cell viability, arrested cells in the G2/M phase, and induced apoptosis. The combined treatment also reduced cellular oxygen consumption and extracellular acidification rate, resulting in decreased production of ATP and lower steady-state ATP levels. Energy depletion markedly activated AMPK, inhibited mTOR and RAS signaling pathways, eventually inducing autophagy, the cellular pro-survival process under metabolic stress, whereas inhibition of autophagy by chloroquine (6.25 µM) enhanced the cytotoxic effect of the combination of lovastatin and 2-deoxy-D-glucose. These in vitro experiment results were reproduced in a nude mouse xenograft model of HCT116 cells. Our findings suggest that concurrently targeting glycolysis, oxidative phosphorylation, and autophagy may be a promising regimen for the management of RAS-driven colorectal cancers.


Asunto(s)
Autofagia/fisiología , Neoplasias Colorrectales/genética , Desoxiglucosa/administración & dosificación , Lovastatina/administración & dosificación , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antimetabolitos/administración & dosificación , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cloroquina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Células HCT116 , Células HEK293 , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
Curr Probl Cancer ; 45(3): 100673, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33223227

RESUMEN

BACKGROUND: HOXA5 is considered as an oncogene in many tumors. This study in- vestigated the HOXA5 expression in Chinese acute myeloid leukemia (AML) patients and evaluated the predictive significance of HOXA5 with a single-center retrospective study. METHODS: We investigated the expression pattern and prognostic value of HOXA5 in patients with AML through by using a series of databases and various datasets, including the ONCOMINE, TCGA, and STRING datasets. The bone marrow samples of 53 newly diagnosed AML patients (non-M3 subtype) and 19 benign individuals were collected in our center. HOXA5 mRNA expression levels were detected by real-time qPCR, HOXA5 protein expression levels were detected by Western Blot. Clinical data was obtained from inpatient medical records. RESULTS: Two microarrays in Oncomine showed that the expression level of HOXA5 was significantly upregulated in AML. Our data revealed that AML patients had higher HOXA5 mRNA and protein expression levels than the controls (P < 0.001). The blast percentage in bone marrow of HOXA5 high-expression group was higher that of HOXA5 low-expression group (P < 0.05). Higher expression level of HOXA5 revealed a worse OS in AML (P < 0.05). CONCLUSION: Our findings suggested that HOXA5 might have the potential ability to act as a diagnostic biomarker and potential therapeutic target for AML.


Asunto(s)
Proteínas de Homeodominio/genética , Leucemia Mieloide Aguda/genética , Anciano , Biomarcadores de Tumor/análisis , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética , Estudios Retrospectivos
13.
Phytomedicine ; 67: 153154, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31926475

RESUMEN

BACKGROUND: Kanglaite injection (KLT) is a broad-spectrum anti-tumor drug, which is extracted from the seeds of the Chinese medicinal herb Coix lacryma-jobi, and has been widely used for the treatment of advanced lung cancer. PURPOSE: To evaluate the combined effects of Kanglaite injection plus platinum-based chemotherapy (PBC) on patients with stage III/IV non-small cell lung cancer (NSCLC). STUDY DESIGN: A systematic review and meta-analysis of randomized clinical trials (RCTs). MATERIALS AND METHODS: Twelve databases were searched from their inceptions until July 05, 2019. All the RCTs comparing the efficacy and safety of Kanglaite injection plus PBC versus PBC alone were selected. Analyses were performed using Review Manager 5.3, Comprehensive Meta-Analysis 3.0 and Trial Sequential Analysis (TSA). Disease control rate (DCR) was defined as the primary endpoint, objective response rate (ORR), survival rate, quality of life (QOL), cellular immunity function, and toxicities were defined as the secondary endpoints. RESULTS: Twenty-seven RCTs recruiting 2,243 patients with stage III/IV NSCLC were included. The results showed that, compared with PBC alone, Kanglaite injection plus PBC improved DCR (RR = 1.20, 95% CI 1.15-1.26, p < 0.00001), ORR (RR = 1.45, 95% CI 1.31-1.60, p < 0.00001), 1-year survival rate (RR = 1.20, 95% CI 1.02-1.43, p = 0.03), QOL (RR = 1.32, 95% CI 1.25-1.40, p < 0.00001), CD4+T cells (WMD = 4.86, 95% CI 4.00-5.73, p < 0.00001), CD4+/CD8+ ratio (WMD = 0.19, 95% CI 0.07-0.31, p < 0.002), and reduced severe toxicities by 59% (RR = 0.41, 95% CI 0.33-0.51, p < 0.00001). Most results were robust and the quality of evidence was from moderate to low. CONCLUSIONS: Kanglaite injection in combination with PBC showed significantly higher efficacy than PBC alone in the treatment of stage III/IV NSCLC. Moreover, the combination therapy can improve cellular immunity and attenuate the severe toxicities caused by chemotherapy. However, high-quality RCTs are warranted to further assess the effects of the combined therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Inyecciones , Compuestos de Platino/administración & dosificación , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Tasa de Supervivencia
14.
EBioMedicine ; 45: 251-260, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31201144

RESUMEN

BACKGROUND: Statin-associated muscle symptoms (SAMS) are the major adverse effects of the class of widely used lipid-lowering agents, and the underlying mechanism remains elusive. In this study, we investigated the potential contribution and molecular mechanism of increased lactate production to SAMS in mice. METHODS: C57BL/6 J mice were administrated with lovastatin and exercise capacity and blood and muscle lactate levels were measured. A variety of metabolic and molecular experiments were carried out on skeletal muscle cell lines A-204 and C2C12 to confirm the in vivo findings, and to delineate the molecular pathway regulating lactate production by statins. FINDINGS: Blood lactate levels of mice treated with lovastatin increased 23% compared to the control group, which was reproduced in type II predominant glycolytic muscles, accompanied with a 23.1% decrease of maximum swim duration time. The in vitro evidence revealed that statins increased the expression of muscle specific glycolytic enzyme ß-enolase through promoting the degradation of basal p53 proteins, resulting in increased of lactate production. Co-administered with dichloroacetate (DCA), a reagent effective in treating lactic acidosis, reverted the elevated lactate levels and the decreased exercise capacity. INTERPRETATION: Elevated lactate production by statins through the p53/ß-enolase axis contributes to SAMS. FUND: This work was supported by grants from the Science and Technology Development Fund (FDCT) of Macau (Project codes: 034/2015/A1 and 0013/2019/A1).


Asunto(s)
Ácido Láctico/sangre , Músculo Esquelético/efectos de los fármacos , Fosfopiruvato Hidratasa/genética , Proteína p53 Supresora de Tumor/genética , Animales , Ácido Dicloroacético/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/efectos adversos , Lovastatina/farmacología , Ratones , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal
15.
FEBS Lett ; 592(3): 380-393, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29323703

RESUMEN

Accumulated evidence in the last decade implies that regulation of metabolism by p53 represents a reviving mechanism vital to prevent tumorigenesis. To gain a more in-depth understanding of metabolic regulation by baseline levels of p53, we employed both metabolomics and transcriptomics analysis with human colon cancer cell-line HCT116 depleted of p53. Metabolomics analyses with UPLC/quadrupole time-of-flight mass spectrometry identified 283 significantly changed metabolites including 138 important metabolites. Transcriptomics analysis with microarray revealed 1317 differentially expressed genes. By integrated analysis of both omics data, we found nucleotides metabolism and sulfur-related metabolism are of great importance. Our study provided a pilot comprehensive view of the metabolism regulated by p53 and suggests several potential p53 targets in metabolism for further study.


Asunto(s)
Neoplasias del Colon/genética , Eliminación de Gen , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos , Proteína p53 Supresora de Tumor/genética , Cromatografía Líquida de Alta Presión , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Espectrometría de Masas , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
DNA Cell Biol ; 37(2): 70-77, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29215922

RESUMEN

To evaluate the in vitro anticancer activity and to investigate the mechanism of action of a thiophene heterocyclic compound, [3-Amino-5-[(2,6-dimethylphenyl)amino]-4-(phenylsulfonyl)-2-thienyl](4-fluorophenyl)methanone (APTM) against human colon cancer HCT116 cells. Sulforhodamine B assay and colony formation assay for cell proliferation assay; propidium iodide (PI) staining for cell cycle profile analysis; Hoechst staining; annexin V-FITC/PI double staining and Western blotting for apoptosis assay. APTM inhibits the growth of HCT116 cells dose and time dependently. The growth inhibitory effect of APTM on HCT116 cells was associated with induction of apoptosis but not cell cycle arrest. Also, the isogenic cell depletion of p53 was resistant to APTM-induced apoptosis and thus grows relatively better than the wild-type cells. The anticancer effect of APTM resulted from p53-dependent induction of apoptosis. Also, APTM is a promising lead compound for the treatment of human colon cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tiofenos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Concentración 50 Inhibidora , Proteína p53 Supresora de Tumor/metabolismo
17.
Sci Rep ; 7(1): 2022, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515445

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targeted therapy currently. Recent studies imply that protein kinase C may play important roles in TNBC development and could be a specific target. In this study, we evaluated the anti-proliferative activity of PKC inhibitor chelerythrine on a panel of breast cancer cell lines. Chelerythrine selectively inhibited the growth of TNBC cell lines compared to non-TNBC cell lines as demonstrated by in vitro cell proliferation assay and colony formation assay, as well as evidenced by in vivo xenograft assay. The selective anti-proliferative effect of chelerythrine was associated with induction of apoptosis in TNBC cell lines. We further demonstrated that PKN2, one of the PKC subtypes, was highly expressed in TNBC cell lines, and knocking down PKN2 in TNBC cells inhibited colony formation and xenograft growth. This indicates that PKN2 is required for the survival of TNBC cells, and could be the target mediates the selective activity of chelerythrine. Finally, combination of chelerythrine and chemotherapy reagent taxol showed synergistic/additive effect on TNBC cell lines. Our results suggest chelerythrine or other PKC inhibitors may be promising regimens for TNBC tumors.


Asunto(s)
Antineoplásicos/farmacología , Benzofenantridinas/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/antagonistas & inhibidores , Ratones , Paclitaxel/farmacología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Chin Med ; 11: 43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27708693

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino (GpM) (Jiaogulan) has been widely used in Chinese medicine for the treatment of several diseases, including hepatitis, diabetes and cardiovascular disease. Furthermore, GpM has recently been shown to exhibit potent anti-cancer activities. In this review, we have summarized recent research progress on the anti-cancer activities and mechanisms of action of GpM, as well as determining the material basis for the anti-cancer effects of GpM by searching the PubMed, Web of Science and China National Knowledge Infrastructure databases. The content of this review is based on studies reported in the literature pertaining to the chemical components or anti-cancer effects of GpM up until the beginning of August, 2016. This search of the literature revealed that more than 230 compounds have been isolated from GpM, and that most of these compounds (189) were saponins, which are also known as gypenosides. All of the remaining compounds were classified as sterols, flavonoids or polysaccharides. Various extracts and fractions of GpM, as well as numerous pure compounds isolated from this herb exhibited inhibitory activity towards the proliferation of cancer cells in vitro and in vivo. Furthermore, the results of several clinical studies have shown that GpM formula could have potential curative effects on cancer. Multiple mechanisms of action have been proposed regarding the anti-cancer activities of GpM, including cell cycle arrest, apoptosis, inhibition of invasion and metastasis, inhibition of glycolysis and immunomodulating activities.

19.
Pharmacol Res ; 111: 849-858, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27491559

RESUMEN

Breast cancer, the most frequent cancer in women, is the second leading cause of cancer-related death. Estrogens and estrogen receptors are well recognized to play predominant roles in breast cancer development and growth. Neo-tanshinlactone is a natural product isolated from Salvia miltiorrhiza and showed selective growth inhibition of ER+ breast cancer cell lines as demonstrated by cell proliferation assay and colony formation assay. The selective anti-proliferative effect of neo-tanshinlactone was associated with the induction of apoptosis in ER+ breast cancer cells. We also found that neo-tanshinlactone decreased steady state ESR1 mRNA levels in ER+ breast cancer cells, which was further confirmed by analysis of ER protein levels as well as the mRNA levels of target genes of this transcription factor, such as ESR2, BRCA1, CCND1, GREB1, TFF1, SERPINB9 and ABCA3. Furthermore, analysis of heterogeneous nuclear RNA (hnRNA) demonstrated that neo-tanshinlactone inhibited ESR1 mRNA de novo synthesis. The decrease of steady state ESR1 mRNA upon neo-tanshinlactone treatment was not abolished by protein synthesis inhibitor cycloheximide. And inhibition of mRNA synthesis with actinomycin D revealed no significant effect of neo-tanshinlactone on ESR1 mRNA stability. These results indicated that transcriptional down-regulation of ESR1 mRNA could contribute to the selective activity of neo-tanshinlactone on ER+ breast cancer cells. And as expected, the combination of neo-tanshinlactone and antiestrogen reagent tamoxifen showed a synergistic effect on growth of ER+ MCF7 cells. Our results suggest that neo-tanshinlactone is a promising regimen for ER+ breast tumors.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Furanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pironas/farmacología , Transcripción Genética/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Sinergismo Farmacológico , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología , Factores de Tiempo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27034692

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino (GpM) has been widely used in traditional Chinese medicine (TCM) for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 µg/mL to 38.02 µg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose) polymerase (cPARP). Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA