Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 8(18): e2100694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278745

RESUMEN

The transport of membrane impermeable compounds into cells is a prerequisite for the efficient cellular delivery of hydrophilic and amphiphilic compounds and drugs. Transport into the cell's cytosolic compartment should ideally be controllable and it should involve biologically compatible and degradable vehicles. Addressing these challenges, nanocontainers based on cyclodextrin amphiphiles that are stabilized by a biodegradable peptide shell are developed and their potential to deliver fluorescently labeled cargo into human cells is analyzed. Host-guest mediated self-assembly of a thiol-containing short peptide or a cystamine-cross-linked polypeptide shell on cyclodextrin vesicles produce short peptide-shelled (SPSVss ) or polypeptide-shelled vesicles (PPSVss ), respectively, with redox-responsive and biodegradable features. Whereas SPSVss are permeable and less stable, PPSVss effectively encapsulate cargo and show a strictly regulated release of membrane impermeable cargo triggered by either reducing conditions or peptidase treatment. Live cell experiments reveal that the novel PPSVSS are readily internalized by primary human endothelial cells (human umbilical vein endothelial cells) and cervical cancer cells and that the reductive microenvironment of the cells' endosomes trigger release of the hydrophilic cargo into the cytosol. Thus, PPSVSS represent a highly efficient, biodegradable, and tunable system for overcoming the plasma membrane as a natural barrier for membrane-impermeable cargo.


Asunto(s)
Ciclodextrinas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Células Endoteliales/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/metabolismo , Humanos , Nanopartículas/metabolismo
2.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974911

RESUMEN

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Asunto(s)
Chaetomium , Proteínas Fúngicas , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferasa , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA