Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Cell ; 29(1): 90-103, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26748848

RESUMEN

Half of all human cancers lose p53 function by missense mutations, with an unknown fraction of these containing p53 in a self-aggregated amyloid-like state. Here we show that a cell-penetrating peptide, ReACp53, designed to inhibit p53 amyloid formation, rescues p53 function in cancer cell lines and in organoids derived from high-grade serous ovarian carcinomas (HGSOC), an aggressive cancer characterized by ubiquitous p53 mutations. Rescued p53 behaves similarly to its wild-type counterpart in regulating target genes, reducing cell proliferation and increasing cell death. Intraperitoneal administration decreases tumor proliferation and shrinks xenografts in vivo. Our data show the effectiveness of targeting a specific aggregation defect of p53 and its potential applicability to HGSOCs.


Asunto(s)
Proliferación Celular/genética , Neoplasias Ováricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Transgénicos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína p53 Supresora de Tumor/genética
2.
PLoS Biol ; 11(6): e1001590, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23853546

RESUMEN

Etsrp/Etv2 (Etv2) is an evolutionarily conserved master regulator of vascular development in vertebrates. Etv2 deficiency prevents the proper specification of the endothelial cell lineage, while its overexpression causes expansion of the endothelial cell lineage in the early embryo or in embryonic stem cells. We hypothesized that Etv2 alone is capable of transdifferentiating later somatic cells into endothelial cells. Using heat shock inducible Etv2 transgenic zebrafish, we demonstrate that Etv2 expression alone is sufficient to transdifferentiate fast skeletal muscle cells into functional blood vessels. Following heat treatment, fast skeletal muscle cells turn on vascular genes and repress muscle genes. Time-lapse imaging clearly shows that muscle cells turn on vascular gene expression, undergo dramatic morphological changes, and integrate into the existing vascular network. Lineage tracing and immunostaining confirm that fast skeletal muscle cells are the source of these newly generated vessels. Microangiography and observed blood flow demonstrated that this new vasculature is capable of supporting circulation. Using pharmacological, transgenic, and morpholino approaches, we further establish that the canonical Wnt pathway is important for induction of the transdifferentiation process, whereas the VEGF pathway provides a maturation signal for the endothelial fate. Additionally, overexpression of Etv2 in mammalian myoblast cells, but not in other cell types examined, induced expression of vascular genes. We have demonstrated in zebrafish that expression of Etv2 alone is sufficient to transdifferentiate fast skeletal muscle into functional endothelial cells in vivo. Given the evolutionarily conserved function of this transcription factor and the responsiveness of mammalian myoblasts to Etv2, it is likely that mammalian muscle cells will respond similarly.


Asunto(s)
Transdiferenciación Celular , Endotelio Vascular/citología , Músculo Esquelético/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Línea Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Proc Natl Acad Sci U S A ; 109(20): 7630-5, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22547795

RESUMEN

Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications. Here, we demonstrate an automated microfluidic technology capable of probing single-cell deformability at approximately 2,000 cells/s. The method uses inertial focusing to uniformly deliver cells to a stretching extensional flow where cells are deformed at high strain rates, imaged with a high-speed camera, and computationally analyzed to extract quantitative parameters. This approach allows us to analyze cells at throughputs orders of magnitude faster than previously reported biophysical flow cytometers and single-cell mechanics tools, while creating easily observable larger strains and limiting user time commitment and bias through automation. Using this approach we rapidly assay the deformability of native populations of leukocytes and malignant cells in pleural effusions and accurately predict disease state in patients with cancer and immune activation with a sensitivity of 91% and a specificity of 86%. As a tool for biological research, we show the deformability we measure is an early biomarker for pluripotent stem cell differentiation and is likely linked to nuclear structural changes. Microfluidic deformability cytometry brings the statistical accuracy of traditional flow cytometric techniques to label-free biophysical biomarkers, enabling applications in clinical diagnostics, stem cell characterization, and single-cell biophysics.


Asunto(s)
Elasticidad/fisiología , Células Madre Embrionarias/citología , Células HeLa/citología , Inmunofenotipificación/métodos , Leucocitos Mononucleares/citología , Animales , Biomarcadores , Fenómenos Biomecánicos , Western Blotting , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Células HeLa/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Leucocitos Mononucleares/fisiología , Ratones , Técnicas Analíticas Microfluídicas , Células 3T3 NIH , Sensibilidad y Especificidad , Estadísticas no Paramétricas
4.
PLoS One ; 6(12): e28960, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194959

RESUMEN

The cell intrinsic programming that regulates mammalian primordial germ cell (PGC) development in the pre-gonadal stage is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs) from mouse embryonic stem cells (ESCs). Using labeling for SSEA1 and cKit, two cell surface molecules used previously to isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we determined that selecting for cKit(bright) cells within the SSEA1+ fraction significantly enriches for the putative iPGC population. Single cell analysis comparing SSEA1+/cKit(bright) iPGCs to ESCs and embryonic PGCs demonstrates that 97% of single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5-10.5 PGCs, whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKit(bright) iPGCs. Taken together, the generation of Blimp1-positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-positive stage of development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Análisis de la Célula Individual/métodos , Factores de Transcripción/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Separación Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Antígeno Lewis X/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transcripción Genética , Transgenes
5.
Stem Cells ; 29(3): 486-95, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21425411

RESUMEN

Pluripotent stem cells hold significant promise in regenerative medicine due to their unlimited capacity for self-renewal and potential to differentiate into any cell type of the body. In this study, we demonstrate that proper mitochondrial function is essential for proliferation of undifferentiated ESCs. Attenuating mitochondrial function under self-renewing conditions makes these cells more glycolytic-dependent, and it is associated with an increase in the mRNA reserves of Nanog, Oct4, and Sox2. In contrast, attenuating mitochondrial function during the first 7 days of differentiation results in normal repression of Oct4, Nanog, and Sox2. However, differentiation potential is compromised as revealed by abnormal transcription of multiple Hox genes. Furthermore, under differentiating conditions in which mitochondrial function is attenuated, tumorigenic cells continue to persist. Our results, therefore establish the importance of normal mitochondrial function in ESC proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/fisiología , Mitocondrias/fisiología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Ratones SCID , Células Madre Pluripotentes/fisiología , Factores de Tiempo
6.
PLoS One ; 6(1): e16478, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21304588

RESUMEN

Pluripotent stem cells (PSCs) hold significant promise in regenerative medicine due to their unlimited capacity for self-renewal and potential to differentiate into every cell type in the body. One major barrier to the use of PSCs is their potential risk for tumor initiation following differentiation and transplantation in vivo. In the current study we sought to evaluate the role of the tumor suppressor Pten in murine PSC neoplastic progression. Using eight functional assays that have previously been used to indicate PSC adaptation or transformation, Pten null embryonic stem cells (ESCs) failed to rate as significant in five of them. Instead, our data demonstrate that the loss of Pten causes the emergence of a small number of aggressive, teratoma-initiating embryonic carcinoma cells (ECCs) during differentiation in vitro, while the remaining 90-95% of differentiated cells are non-tumorigenic. Furthermore, our data show that the mechanism by which Pten null ECCs emerge in vitro and cause tumors in vivo is through increased survival and self-renewal, due to failed repression of the transcription factor Nanog.


Asunto(s)
Diferenciación Celular , Transformación Celular Neoplásica , Proteínas de Homeodominio/fisiología , Fosfohidrolasa PTEN/deficiencia , Células Madre Pluripotentes/patología , Animales , Supervivencia Celular , Células Madre Embrionarias , Ratones , Proteína Homeótica Nanog , Células Madre Neoplásicas/patología
7.
Development ; 133(15): 2793-804, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16790481

RESUMEN

During embryogenesis, the isthmic organizer, a well-described signaling center at the junction of the mid-hindbrain, establishes the cerebellar territory along the anterior/posterior axis of the neural tube. Mechanisms specifying distinct populations within the early cerebellar anlage are less defined. Using a newly developed gene expression map of the early cerebellar anlage, we demonstrate that secreted signals from the rhombomere 1 roof plate are both necessary and sufficient for specification of the adjacent cerebellar rhombic lip and its derivative fates. Surprisingly, we show that the roof plate is not absolutely required for initial specification of more distal cerebellar cell fates, but rather regulates progenitor proliferation and cell position within the cerebellar anlage. Thus, in addition to the isthmus, the roof plate represents an important signaling center controlling multiple aspects of cerebellar patterning.


Asunto(s)
Fenómenos Fisiológicos Celulares , Cerebelo/embriología , Animales , División Celular , Cerebelo/anomalías , Anomalías Congénitas/embriología , Anomalías Congénitas/patología , Desarrollo Embrionario , Ratones , Ratones Mutantes , Defectos del Tubo Neural/patología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA