Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Mol Pharm ; 21(5): 2441-2455, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38623055

RESUMEN

Folate receptors including folate receptor α (FRα) are overexpressed in up to 90% of ovarian cancers. Ovarian cancers overexpressing FRα often exhibit high degrees of drug resistance and poor outcomes. A porphyrin chassis has been developed that is readily customizable according to the desired targeting properties. Thus, compound O5 includes a free base porphyrin, two water-solubilizing groups that project above and below the macrocycle plane, and a folate targeting moiety. Compound O5 was synthesized (>95% purity) and exhibited aqueous solubility of at least 0.48 mM (1 mg/mL). Radiolabeling of O5 with 64Cu in HEPES buffer at 37 °C gave a molar activity of 1000 µCi/µg (88 MBq/nmol). [64Cu]Cu-O5 was stable in human serum for 24 h. Cell uptake studies showed 535 ± 12% bound/mg [64Cu]Cu-O5 in FRα-positive IGROV1 cells when incubated at 0.04 nM. Subcellular fractionation showed that most radioactivity was associated with the cytoplasmic (39.4 ± 2.7%) and chromatin-bound nuclear (53.0 ± 4.2%) fractions. In mice bearing IGROV1 xenografts, PET imaging studies showed clear tumor uptake of [64Cu]Cu-O5 from 1 to 24 h post injection with a low degree of liver uptake. The tumor standardized uptake value at 24 h post injection was 0.34 ± 0.16 versus 0.06 ± 0.07 in the blocking group. In summary, [64Cu]Cu-O5 was synthesized at high molar activity, was stable in serum, exhibited high binding to FRα-overexpressing cells with high nuclear translocation, and gave uptake that was clearly visible in mouse tumor xenografts.


Asunto(s)
Radioisótopos de Cobre , Neoplasias Ováricas , Tomografía de Emisión de Positrones , Animales , Humanos , Ratones , Femenino , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/metabolismo , Porfirinas/química , Receptor 1 de Folato/metabolismo , Distribución Tisular , Ratones Desnudos , Radiofármacos/farmacocinética , Radiofármacos/química , Ácido Fólico/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630384

RESUMEN

Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open ß-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.


Asunto(s)
Glicósidos Cardíacos , Cianobacterias , Porfirinas , Tetrapirroles , Cianobacterias/genética , Porfirinas/farmacología
3.
Planta Med ; 89(6): 637-662, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36198325

RESUMEN

Phyllobilins are open-chain products of the biological degradation of chlorophyll a in higher plants. Recent studies reveal that phyllobilins exert anti-oxidative and anti-inflammatory properties, as well as activities against cancer cells, that contribute to the human health benefits of numerous plants. In general, phyllobilins have been overlooked in phytochemical analyses, and - more importantly - in the analyses of medicinal plant extracts. Nevertheless, over the past three decades, > 70 phyllobilins have been identified upon examination of more than 30 plant species. Eight distinct chromophoric classes of phyllobilins are known: phyllolumibilins (PluBs), phylloleucobilins (PleBs), phylloxanthobilins (PxBs), and phylloroseobilins (PrBs)-each in type-I or type-II groups. Here, we present a database of absorption and fluorescence spectra that has been compiled of 73 phyllobilins to facilitate identification in phytochemical analyses. The spectra are provided in digital form and can be viewed and downloaded at www.photochemcad.com. The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties. The review should provide an enabling tool for the community for the straightforward identification of phyllobilins in plant extracts, and the foundation for deeper understanding of these ubiquitous but underexamined plant-derived micronutrients for human health.


Asunto(s)
Clorofila , Plantas , Humanos , Clorofila/análisis , Clorofila/química , Clorofila/metabolismo , Clorofila A/metabolismo , Plantas/metabolismo , Oxidación-Reducción , Extractos Vegetales/química , Fitoquímicos/química
4.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557815

RESUMEN

A targeted strategy for treating cancer is antibody-directed enzyme prodrug therapy, where the enzyme attached to the antibody causes conversion of an inactive small-molecule prodrug into an active drug. A limitation may be the diffusion of the active drug away from the antibody target site. A related strategy with radiotherapeutics entails enzymatically promoted conversion of a soluble to insoluble radiotherapeutic agent, thereby immobilizing the latter at the target site. Such a molecular brachytherapy has been scarcely investigated. In distinct research, the advent of molecular designs for aggregation-induced emission (AIE) suggests translational use in molecular brachytherapy. Here, several 2-(2-hydroxyphenyl)benzothiazole substrates that readily aggregate in aqueous solution (and afford AIE) were elaborated in this regard. In particular, (1) the 2-(2-hydroxyphenyl) unit was derivatized to bear a pegylated phosphodiester that imparts water solubility yet undergoes enzymatic cleavage, and (2) a p-phenol unit was attached to the benzo moiety to provide a reactive site for final-step iodination (here examined with natural abundance iodide). The pegylated phosphodiester-iodinated benzothiazole undergoes conversion from aqueous-soluble to aqueous-insoluble upon treatment with a phosphatase or phosphodiesterase. The aggregation is essential to molecular brachytherapy, whereas the induced emission of AIE is not essential but provides a convenient basis for research development. Altogether, 21 compounds were synthesized (18 new, 3 known via new routes). Taken together, blending biomedical strategies of enzyme prodrug therapy with materials chemistry concerning substances that undergo AIE may comprise a step forward on the long road toward molecular brachytherapy.


Asunto(s)
Braquiterapia , Profármacos , Benzotiazoles , Polietilenglicoles
5.
Phytochem Anal ; 29(2): 205-216, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29110356

RESUMEN

INTRODUCTION: Tolyporphins are unusual tetrapyrrole macrocycles produced by a non-axenic filamentous cyanobacterium (HT-58-2). Tolyporphins A-J, L, and M share a common dioxobacteriochlorin core, differ in peripheral substituents, and exhibit absorption spectra that overlap that of the dominant cyanobacterial pigment, chlorophyll a. Identification and accurate quantitation of the various tolyporphins in these chlorophyll-rich samples presents challenges. OBJECTIVE: To develop methods for the quantitative determination of tolyporphins produced under various growth conditions relative to that of chlorophyll a. METHODOLOGY: Chromatographic fractionation of large-scale (440 L) cultures afforded isolated individual tolyporphins. Lipophilic extraction of small-scale (25 mL) cultures, HPLC separation with an internal standard, and absorption detection enabled quantitation of tolyporphin A and chlorophyll a, and by inference the amounts of tolyporphins A-M. Absorption spectroscopy with multicomponent analysis of lipophilic extracts (2 mL cultures) afforded the ratio of all tolyporphins to chlorophyll a. The reported absorption spectral data for the various tolyporphins required re-evaluation for quantitative purposes. RESULTS AND DISCUSSION: The amount of tolyporphin A after 50 days of illumination ranged from 0.13 nmol/mg dry cells (media containing nitrate) to 1.12 nmol/mg (without nitrate), with maximum 0.23 times that of chlorophyll a. Under soluble-nitrogen deprivation after 35-50 days, tolyporphin A represents 1/3-1/2 of the total tolyporphins, and the total amount of tolyporphins is up to 1.8-fold that of chlorophyll a. CONCLUSIONS: The quantitative methods developed herein should facilitate investigation of the biosynthesis of tolyporphins (and other tetrapyrroles) as well as examination of other strains for production of tolyporphins. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Clorofila/química , Cromatografía Líquida de Alta Presión/métodos , Cianobacterias/metabolismo , Porfirinas/análisis , Análisis Espectral/métodos , Tetrapirroles/análisis , Clorofila A , Cianobacterias/crecimiento & desarrollo , Porfirinas/química , Estándares de Referencia , Reproducibilidad de los Resultados
6.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754701

RESUMEN

The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae, 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis.IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.


Asunto(s)
Cianobacterias/metabolismo , Genoma Bacteriano , Porfirinas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Cianobacterias/química , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Metagenómica , Familia de Multigenes , Filogenia , Porfirinas/química
7.
Org Biomol Chem ; 13(39): 10025-31, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26291175

RESUMEN

The formation of elaborate molecules is regarded as an essential first step in prebiotic chemistry, but how such transformations could spontaneously occur, particularly in dilute aqueous conditions, remains poorly understood. Here, micromolar concentrations of a 3,4-dialkylpyrrole and excess formaldehyde in aqueous micellar solution (pH 7) at 25 or 50 °C were found to give good yield (up to 40%) of the lipophilic octaalkylporphyrin. The reaction occurs despite a mean occupancy number of ∼0.1 pyrrole molecules/micelle, and <1 of 10,000 micelles initially containing the requisite 4 pyrrole molecules to form the porphyrin assuming a (random) Poisson distribution. Yields of up to 13% were observed in large, unilamellar phosphatidylcholine vesicles, wherein there are ∼15,000 pyrrole molecules per vesicle membrane. Double-labeling crossover experiments (of 3,4-diethylpyrrole and 3,4-dimethylpyrrole) examined by mass spectrometry revealed facile exchange processes of reactive constituents among both micelle and vesicle surfactant assemblies. Together, the exchange of pyrrolic reactants among micelles and the thermodynamic driving force for tetrapyrrole formation overcome the apparent statistical odds against reaction. The fruitful exchange, accumulation and reaction of minute quantities of reactants in aqueous-surfactant assemblies suggest a general means for formation of prebiotically valuable constituents, even when the statistical odds at the outset are overwhelmingly improbable.


Asunto(s)
Formaldehído/química , Porfirinas/química , Pirroles/química , Tensoactivos/química , Liposomas Unilamelares/química , Micelas , Origen de la Vida , Fosfatidilcolinas/química
8.
J Photochem Photobiol B ; 141: 119-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25463659

RESUMEN

Three stable synthetic mono-substituted cationic bacteriochlorins (BC37, BC38 and BC39) were recently reported to show exceptional activity (low nanomolar) in mediating photodynamic killing of human cancer cells after a 24h incubation upon excitation with near-infrared light (730 nm). The presence of cationic quaternary ammonium groups in each compound suggested likely activity as antimicrobial photosensitizers. Herein this hypothesis was tested against a panel of pathogenic microorganisms that have all recently drawn attention due to increased drug-resistance (Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis; Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii; and fungal yeasts, Candida albicans and Cryptococcus neoformans). All three bacteriochlorins were highly effective against both Gram-positive species (>6 logs of eradication at ⩽ 200 nM and 10 J/cm(2)). The dicationic bacteriochlorin (BC38) was best against the Gram-negative species (>6 logs at 1-2 µM) whereas the lipophilic monocationic bacteriochlorin (BC39) was best against the fungi (>6 logs at 1 µM). The bacteriochlorins produced substantial singlet oxygen (and apparently less Type-1 reactive-oxygen species such as hydroxyl radical) as judged by activation of fluorescent probes and comparison with 1H-phenalen-1-one-2-sulfonic acid; the order of activity was BC37 > BC38 > BC39. A short incubation time (30 min) resulted in selectivity for microbial cells over HeLa human cells. The highly active photodynamic inactivation of microbial cells may stem from the amphiphilic and cationic features of the bacteriochlorins.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Porfirinas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , Cationes/química , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/efectos de la radiación , Farmacorresistencia Bacteriana/efectos de la radiación , Farmacorresistencia Fúngica/efectos de la radiación , Colorantes Fluorescentes/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/efectos de la radiación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/efectos de la radiación , Células HeLa , Humanos , Luz , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/síntesis química , Porfirinas/química , Oxígeno Singlete/química , Oxígeno Singlete/farmacología
9.
Photosynth Res ; 122(2): 187-202, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24997120

RESUMEN

Biohybrid light-harvesting architectures can be constructed that employ native-like bacterial photosynthetic antenna peptides as a scaffold to which synthetic chromophores are attached to augment overall spectral coverage. Synthetic bacteriochlorins are attractive to enhance capture of solar radiation in the photon-rich near-infrared spectral region. The effect of the polarity of the bacteriochlorin substituents on the antenna self-assembly process was explored by the preparation of a bacteriochlorin-peptide conjugate using a synthetic amphiphilic bacteriochlorin (B1) to complement prior studies using hydrophilic (B2, four carboxylic acids) or hydrophobic (B3) bacteriochlorins. The amphiphilic bioconjugatable bacteriochlorin B1 with a polar ammonium-terminated tail was synthesized by sequential Pd-mediated reactions of a 3,13-dibromo-5-methoxybacteriochlorin. Each bacteriochlorin bears a maleimido-terminated tether for attachment to a cysteine-containing analog of the Rhodobacter sphaeroides antenna ß-peptide to give conjugates ß-B1, ß-B2, and ß-B3. Given the hydrophobic nature of the ß-peptide, the polarity of B1 and B2 facilitated purification of the respective conjugate compared to the hydrophobic B3. Bacteriochlorophyll a (BChl a) associates with each conjugate in aqueous micellar media to form a dyad containing two ß-peptides, two covalently attached synthetic bacteriochlorins, and a datively bonded BChl-a pair, albeit to a limited extent for ß-B2. The reversible assembly/disassembly of dyad (ß-B2/BChl)2 was examined in aqueous detergent (octyl glucoside) solution by temperature variation (15-35 °C). The energy-transfer efficiency from the synthetic bacteriochlorin to the BChl-a dimer was found to be 0.85 for (ß-B1/BChl)2, 0.40 for (ß-B2/BChl)2, and 0.85 for (ß-B3/BChl)2. Thus, in terms of handling, assembly and energy-transfer efficiency taken together, the amphiphilic design examined herein is more attractive than the prior hydrophilic or hydrophobic designs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Complejos de Proteína Captadores de Luz/química , Porfirinas/química , Luz , Modelos Moleculares , Conformación Proteica
10.
Photosynth Res ; 121(1): 35-48, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24604033

RESUMEN

Biohybrid antennas built upon chromophore-polypeptide conjugates show promise for the design of efficient light-capturing modules for specific purposes. Three new designs, each of which employs analogs of the ß-polypeptide from Rhodobacter sphaeroides, have been investigated. In the first design, amino acids at seven different positions on the polypeptide were individually substituted with cysteine, to which a synthetic chromophore (bacteriochlorin or Oregon Green) was covalently attached. The polypeptide positions are at -2, -6, -10, -14, -17, -21, and -34 relative to the 0-position of the histidine that coordinates bacteriochlorophyll a (BChl a). All chromophore-polypeptides readily formed LH1-type complexes upon combination with the α-polypeptide and BChl a. Efficient energy transfer occurs from the attached chromophore to the circular array of 875 nm absorbing BChl a molecules (denoted B875). In the second design, use of two attachment sites (positions -10 and -21) on the polypeptide affords (1) double the density of chromophores per polypeptide and (2) a highly efficient energy-transfer relay from the chromophore at -21 to that at -10 and on to B875. In the third design, three spectrally distinct bacteriochlorin-polypeptides were prepared (each attached to cysteine at the -14 position) and combined in an ~1:1:1 mixture to form a heterogeneous mixture of LH1-type complexes with increased solar coverage and nearly quantitative energy transfer from each bacteriochlorin to B875. Collectively, the results illustrate the great latitude of the biohybrid approach for the design of diverse light-harvesting systems.


Asunto(s)
Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Bacterioclorofilas/genética , Complejos de Proteína Captadores de Luz/genética , Estructura Secundaria de Proteína , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
11.
Org Biomol Chem ; 12(1): 86-103, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24150272

RESUMEN

Bacteriochlorins absorb strongly in the near-infrared (NIR, 700-900 nm) region and hence are well suited for photophysical studies and photomedical applications, yet such endeavors heretofore have been largely limited by the intrinsic lipophilicity of the bacteriochlorin macrocycle. Here, a new molecular design is investigated wherein 3,5-dicarboxyphenyl units are appended to the ß-pyrrolic positions of the bacteriochlorin. Use of the 3,5-aryl substitution motif places the carboxylic acid groups, which are anionic at neutral pH, above and below the plane of the bacteriochlorin macrocycle. A de novo synthesis has been employed to create five such bacteriochlorins, which uses as intermediates two new 2,12-dibromobacteriochlorin building blocks and a known 3,13-dibromobacteriochlorin. The aryl groups with protected carboxylate moieties were introduced by Suzuki coupling; subsequent deprotection afforded the hydrophilic bacteriochlorins. The latter were characterized by absorption and fluorescence spectroscopy in DMF and in aqueous phosphate buffer (pH 7). In most cases, comparable sharp emission (FWHM of ∼25 nm) and modest fluorescence yields (0.060-0.11) were observed in aqueous phosphate buffer medium and in DMF. Aqueous solubility was examined by absorption spectral interrogation of samples over a 1000-fold concentration range with reciprocal change in pathlength (∼0.5, 5, 50, and 500 µM; 10, 1, 0.1, and 0.01 cm pathlength cuvettes). One hydrophilic bacteriochlorin was prepared that contains a single maleimido-terminated tether for bioconjugation; the tether was installed by the sequence of 15-bromination of the bacteriochlorin, Suzuki coupling, and DCC-mediated amide formation. The maleimido-bacteriochlorin was conjugated to a 48-residue cysteine-containing peptide analogue of a constituent from a bacterial photosynthetic light-harvesting complex. Taken together, the results show a new molecular design and facile de novo synthetic route for obtaining hydrophilic bacteriochlorins including a bioconjugatable group if desired.


Asunto(s)
Ácidos Carboxílicos/química , Fotones , Porfirinas/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Molecular , Porfirinas/síntesis química
12.
J Porphyr Phthalocyanines ; 17(1-2): 73-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23956614

RESUMEN

Bacteriochlorins are attractive candidates as photosensitizers for photodynamic therapy (PDT) due to their intense absorption in the near-infrared (NIR) region of the spectrum where light transmission through tissue is maximal. Many naturally occurring bacteriochlorins are inherently unstable due to adventitious atmospheric oxidation. A de novo synthesis affords bacteriochlorins that contain a geminal dimethyl group in each reduced pyrrole ring to increase stability against oxidation. Here, three new synthetic bacteriochlorins, each bearing a single side-chain containing one or two positive charges, were investigated for their in vitro PDT activity against HeLa human cancer cells. All bacteriochlorins were active at low nanomolar concentration when activated with NIR light; those bearing a single positive charge exhibited faster uptake and higher activity. The bacteriochlorins were localized in mitochondria, lysosomes and endoplasmic reticulum as shown by organelle specific fluorescent probes. Cell death was via apoptosis as shown by cell morphology and nuclear condensation. Taken together, the results show the importance of appropriate peripheral groups about a photosensitizer for effective PDT applications.

13.
Photochem Photobiol ; 89(3): 605-18, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23163632

RESUMEN

Photophysical, photostability, electrochemical and molecular-orbital characteristics are analyzed for a set of stable dicyanobacteriochlorins that are promising photosensitizers for photodynamic therapy (PDT). The bacteriochlorins are the parent compound (BC), dicyano derivative (NC)2BC and corresponding zinc (NC)2BC-Zn and palladium chelate (NC)2BC-Pd. The order of PDT activity against HeLa human cancer cells in vitro is (NC)2BC-Pd > (NC)2BC > (NC)2BC-Zn ≈ BC. The near-infrared absorption feature of each dicyanobacteriochlorin is bathochromically shifted 35-50 nm (748-763 nm) from that for BC (713 nm). Intersystem crossing to the PDT-active triplet excited state is essentially quantitative for (NC)2BC-Pd. Phosphorescence from (NC)2BC-Pd occurs at 1122 nm (1.1 eV). This value and the measured ground-state redox potentials fix the triplet excited-state redox properties, which underpin PDT activity via Type-1 (electron transfer) pathways. A perhaps counterintuitive (but readily explicable) result is that of the three dicyanobacteriochlorins, the photosensitizer with the shortest triplet lifetime (7 µs), (NC)2BC-Pd has the highest activity. Photostabilities of the dicyanobacteriochlorins and other bacteriochlorins studied recently are investigated and discussed in terms of four phenomena: aggregation, reduction, oxidation and chemical reaction. Collectively, the results and analysis provide fundamental insights concerning the molecular design of PDT agents.


Asunto(s)
Complejos de Coordinación/síntesis química , Electrones , Fármacos Fotosensibilizantes/síntesis química , Porfirinas/síntesis química , Bacterioclorofilas/química , Complejos de Coordinación/química , Estabilidad de Medicamentos , Células HeLa , Humanos , Cinética , Mediciones Luminiscentes , Oxidación-Reducción , Paladio/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Porfirinas/química , Teoría Cuántica , Espectroscopía Infrarroja Corta , Termodinámica , Zinc/química
14.
Astrobiology ; 12(11): 1055-68, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23095096

RESUMEN

The functional end products of the extant biosynthesis of tetrapyrrole macrocycles in photosynthetic organisms are hydrophobic: chlorophylls and bacteriochlorophylls. A model for the possible prebiogenesis of hydrophobic analogues of nature's photosynthetic pigments was investigated by reaction of acyclic reactants in five media: aqueous solution (pH 7, 60°C, 24 h); aqueous solution containing 0.1 M decanoic acid (which forms a turbid suspension of vesicles); or aqueous solution accompanied by dodecane, mesitylene, or a five-component organic mixture (each of which forms a phase-separated organic layer). The organic mixture was composed of equimolar quantities of decanoic acid, dodecane, mesitylene, naphthalene, and pentyl acetate. The reaction of 1,5-dimethoxy-3-methylpentan-2,4-dione and 1-aminobutan-2-one to give etioporphyrinogens was enhanced in the presence of decanoic acid, affording (following chemical oxidation) etioporphyrins (tetraethyltetramethylporphyrins) in yields of 1.4-10.8% across the concentration range of 3.75-120 mM. The yield of etioporphyrins was greater in the presence of the five-component organic mixture (6.6% at 120 mM) versus that with dodecane or mesitylene (2.1% or 2.9%, respectively). The reaction in aqueous solution with no added oil-slick constituents resulted in phase separation-where the organic reactants themselves form an upper organic layer-and the yield of etioporphyrins was 0.5-2.6%. Analogous reactions leading to uroporphyrins (hydrophilic, eight carboxylic acids) or coproporphyrins (four carboxylic acids) were unaffected by the presence of decanoic acid or dodecane, and all yields were at most ∼2% or ∼8%, respectively. Taken together, the results indicate a facile means for the formation of highly hydrophobic constituents of potential value for prebiotic photosynthesis.


Asunto(s)
Aceites/química , Tetrapirroles/síntesis química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Fotosíntesis , Porfirinas/síntesis química , Soluciones , Agua/química
15.
ChemMedChem ; 7(12): 2155-67, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23065820

RESUMEN

A series of four stable synthetic bacteriochlorins was tested in vitro in HeLa cells for their potential in photodynamic therapy (PDT). The parent bacteriochlorin (BC), dicyano derivative (NC)(2)BC and corresponding zinc chelate (NC)(2)BC-Zn and palladium chelate (NC)(2)BC-Pd were studied. Direct dilution of a solution of bacteriochlorin in an organic solvent (N,N-dimethylacetamide) into serum-containing medium was compared with the dilution of bacteriochlorin in Cremophor EL (CrEL; polyoxyethylene glycerol triricinoleate) micelles into the same medium. CrEL generally reduced aggregation (as indicated by absorption and fluorescence) and increased activity up to tenfold (depending on bacteriochlorin), although it decreased cellular uptake. The order of PDT activity against HeLa human cancer cells after 24 h incubation and illumination with 10 J cm(-2) of near-infrared (NIR) light is (NC)(2)BC-Pd (LD(50)=25 nM) > (NC)(2)BC > (NC)(2)BC-Zn ≈ BC. Subcellular localization was determined to be in the endoplasmic reticulum, mitochondria and lysosomes, depending on the bacteriochlorin. (NC)(2)BC-Pd showed PDT-mediated damage to mitochondria and lysosomes, and the greatest production of hydroxyl radicals as determined using a hydroxyphenylfluorescein probe. The incorporation of cyano substituents provides an excellent motif for the enhancement of the photoactivity and photostability of bacteriochlorins as PDT photosensitizers.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Animales , Complejos de Coordinación/administración & dosificación , Glicerol/análogos & derivados , Glicerol/química , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Paladio/administración & dosificación , Paladio/química , Paladio/farmacología , Vehículos Farmacéuticos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Porfirinas/administración & dosificación , Zinc/administración & dosificación , Zinc/química , Zinc/farmacología
16.
J Am Chem Soc ; 134(10): 4589-99, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22375881

RESUMEN

Biohybrid antenna systems have been constructed that contain synthetic chromophores attached to 31mer analogues of the bacterial photosynthetic core light-harvesting (LH1) ß-polypeptide. The peptides are engineered with a Cys site for bioconjugation with maleimide-terminated chromophores, which include synthetic bacteriochlorins (BC1, BC2) with strong near-infrared absorption and commercial dyes Oregon green (OGR) and rhodamine red (RR) with strong absorption in the blue-green to yellow-orange regions. The peptides place the Cys 14 (or 6) residues before a native His site that binds bacteriochlorophyll a (BChl-a) and, like the native LH proteins, have high helical content as probed by single-reflection IR spectroscopy. The His residue associates with BChl-a as in the native LH1 ß-polypeptide to form dimeric ßß-subunit complexes [31mer(-14Cys)X/BChl](2), where X is one of the synthetic chromophores. The native-like BChl-a dimer has Q(y) absorption at 820 nm and serves as the acceptor for energy from light absorbed by the appended synthetic chromophore. The energy-transfer characteristics of biohybrid complexes have been characterized by steady-state and time-resolved fluorescence and absorption measurements. The quantum yields of energy transfer from a synthetic chromophore located 14 residues from the BChl-coordinating His site are as follows: OGR (0.30) < RR (0.60) < BC2 (0.90). Oligomeric assemblies of the subunit complexes [31mer(-14Cys)X/BChl](n) are accompanied by a bathochromic shift of the Q(y) absorption of the BChl-a oligomer as far as the 850-nm position found in cyclic native photosynthetic LH2 complexes. Room-temperature stabilized oligomeric biohybrids have energy-transfer quantum yields comparable to those of the dimeric subunit complexes as follows: OGR (0.20) < RR (0.80) < BC1 (0.90). Thus, the new biohybrid antennas retain the energy-transfer and self-assembly characteristics of the native antenna complexes, offer enhanced coverage of the solar spectrum, and illustrate a versatile paradigm for the construction of artificial LH systems.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Luz , Fotosíntesis , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Espectroscopía Infrarroja por Transformada de Fourier
17.
Inorg Chem ; 50(10): 4607-18, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21488626

RESUMEN

Bacteriochlorins have wide potential in photochemistry because of their strong absorption of near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty. Established acid-catalysis conditions [BF(3)·OEt(2) in CH(3)CN or TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2)] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl group in the pyrroline ring) afford stable free base bacteriochlorins. Here, InBr(3) in CH(3)CN at room temperature was found to give directly the corresponding indium bacteriochlorin. Application of the new acid catalysis conditions has afforded four indium bacteriochlorins bearing aryl, alkyl/ester, or no substituents at the ß-pyrrolic positions. The indium bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741-782 nm range, which is shifted bathochromically by 22-32 nm versus the analogous free base species, (ii) fluorescence quantum yields (0.011-0.026) and average singlet lifetime (270 ps) diminished by an order of magnitude versus that (0.13-0.25; 4.0 ns) for the free base analogues, and (iii) higher average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 µs) of the lowest triplet excited state compared to the free base compounds. The differences in the excited-state properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-fold greater rate constant for S(1) → T(1) intersystem crossing, which stems from the heavy-atom effect on spin-orbit coupling. The trends in optical properties of the indium bacteriochlorins versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with frontier molecular-orbital energies and energy gaps derived from density functional theory calculations. Collectively the synthesis, photophysical properties, and electronic characteristics of the indium bacteriochlorins and free base analogues reported herein should aid in the further design of such chromophores for diverse applications.


Asunto(s)
Complejos de Coordinación/metabolismo , Indio/metabolismo , Conformación Molecular/efectos de la radiación , Porfirinas , Ácidos/química , Bacterias , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Catálisis , Complejos de Coordinación/síntesis química , Electrones , Fluorescencia , Indio/química , Cinética , Luz , Espectroscopía de Resonancia Magnética , Imitación Molecular , Fotoquímica/métodos , Fotoquimioterapia , Porfirinas/síntesis química , Porfirinas/metabolismo , Pirroles/química , Teoría Cuántica
18.
Antimicrob Agents Chemother ; 54(9): 3834-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20625146

RESUMEN

Photodynamic inactivation is a rapidly developing antimicrobial treatment that employs a nontoxic photoactivatable dye or photosensitizer in combination with harmless visible light to generate reactive oxygen species that are toxic to cells. Tetrapyrroles (e.g., porphyrins, chlorins, bacteriochlorins) are a class of photosensitizers that exhibit promising characteristics to serve as broad-spectrum antimicrobials. In order to bind to and efficiently penetrate into all classes of microbial cells, tetrapyrroles should have structures that contain (i) one or more cationic charge(s) or (ii) a basic group. In this report, we investigate the use of new stable synthetic bacteriochlorins that have a strong absorption band in the range 720 to 740 nm, which is in the near-infrared spectral region. Four bacteriochlorins with 2, 4, or 6 quaternized ammonium groups or 2 basic amine groups were compared for light-mediated killing against a gram-positive bacterium (Staphylococcus aureus), a gram-negative bacterium (Escherichia coli), and a dimorphic fungal yeast (Candida albicans). Selectivity was assessed by determining phototoxicity against human HeLa cancer cells under the same conditions. All four compounds were highly active (6 logs of killing at 1 microM or less) against S. aureus and showed selectivity for bacteria over human cells. Increasing the cationic charge increased activity against E. coli. Only the compound with basic groups was highly active against C. albicans. Supporting photochemical and theoretical characterization studies indicate that (i) the four bacteriochlorins have comparable photophysical features in homogeneous solution and (ii) the anticipated redox characteristics do not correlate with cell-killing ability. These results support the interpretation that the disparate biological activities observed stem from cellular binding and localization effects rather than intrinsic electronic properties. These findings further establish cationic bacteriochlorins as extremely active and selective near-infrared activated antimicrobial photosensitizers, and the results provide fundamental information on structure-activity relationships for antimicrobial photosensitizers.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/síntesis química , Porfirinas/farmacología , Antiinfecciosos/efectos adversos , Antiinfecciosos/química , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Células HeLa , Humanos , Luz , Microscopía Confocal , Estructura Molecular , Fármacos Fotosensibilizantes/efectos adversos , Fármacos Fotosensibilizantes/química , Porfirinas/efectos adversos , Porfirinas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
19.
J Med Chem ; 53(10): 4018-27, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20441223

RESUMEN

Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the macrocycle. These molecules are characterized by strong absorption features from 700 to >800 nm, which enable deep penetration into tissue. This report describes testing of 12 new stable synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative structure-activity relationships were derived, and subcellular localization was determined. The most active compounds have both low dark toxicity and high phototoxicity. This combination together with near-infrared absorption gives these bacteriochlorins great potential as photosensitizers for treatment of cancer.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Porfirinas/química , Relación Estructura-Actividad Cuantitativa , Muerte Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Rayos Infrarrojos , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/metabolismo , Porfirinas/farmacología , Teoría Cuántica
20.
FASEB J ; 24(9): 3160-70, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20385618

RESUMEN

Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD(50) approximately 0.1 microM) when compared with controls such as the FDA-approved Photofrin (LD(50) approximately 10 microM) and clinically tested LuTex (LD(50) approximately 1 microM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular-orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).


Asunto(s)
Melanoma/tratamiento farmacológico , Fotoquimioterapia/métodos , Porfirinas/síntesis química , Porfirinas/uso terapéutico , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Estructura Molecular , Porfirinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA