Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Am Soc Nephrol ; 28(1): 166-184, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27288011

RESUMEN

Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/fisiología , Glucocorticoides/farmacología , Podocitos/citología , Podocitos/efectos de los fármacos , Factores de Transcripción/fisiología , Adolescente , Adulto , Animales , Antígenos de Diferenciación/efectos de los fármacos , Niño , Dexametasona/farmacología , Femenino , Glomeruloesclerosis Focal y Segmentaria/inmunología , Humanos , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Persona de Mediana Edad , Nefrosis Lipoidea/inmunología , Adulto Joven
2.
PLoS One ; 9(9): e106694, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184684

RESUMEN

Prominin-1 (CD133) is a commonly used cancer stem cell marker in central nervous system (CNS) tumors including glioblastoma (GBM). Expression of Prom1 in cancer is thought to parallel expression and function in normal stem cells. Using RNA in situ hybridization and antibody tools capable of detecting multiple isoforms of Prom1, we find evidence for two distinct Prom1 cell populations in mouse brain. Prom1 RNA is first expressed in stem/progenitor cells of the ventricular zone in embryonic brain. Conversely, in adult mouse brain Prom1 RNA is low in SVZ/SGZ stem cell zones but high in a rare but widely distributed cell population (Prom1(hi)). Lineage marker analysis reveals Prom1(hi) cells are Olig2+Sox2+ glia but Olig1/2 knockout mice lacking oligodendroglia retain Prom1(hi) cells. Bromodeoxyuridine labeling identifies Prom1(hi) as slow-dividing distributed progenitors distinct from NG2+Olig2+ oligodendrocyte progenitors. In adult human brain, PROM1 cells are rarely positive for OLIG2, but express astroglial markers GFAP and SOX2. Variability of PROM1 expression levels in human GBM and patient-derived xenografts (PDX) - from no expression to strong, uniform expression--highlights that PROM1 may not always be associated with or restricted to cancer stem cells. TCGA and PDX data show that high expression of PROM1 correlates with poor overall survival. Within proneural subclass tumors, high PROM1 expression correlates inversely with IDH1 (R132H) mutation. These findings support PROM1 as a tumor cell-intrinsic marker related to GBM survival, independent of its stem cell properties, and highlight potentially divergent roles for this protein in normal mouse and human glia.


Asunto(s)
Antígenos CD/biosíntesis , Neoplasias del Sistema Nervioso Central/genética , Sistema Nervioso Central/metabolismo , Glioblastoma/genética , Glicoproteínas/biosíntesis , Antígeno AC133 , Animales , Antígenos CD/genética , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Neoplasias del Sistema Nervioso Central/patología , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glicoproteínas/genética , Humanos , Hibridación in Situ , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Péptidos/genética , Células Madre/metabolismo , Células Madre/patología
3.
J Biol Chem ; 288(39): 28138-51, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23926099

RESUMEN

The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores de LDL/química , Receptores de Péptidos/química , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Péptidos/química , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/química , Homología de Secuencia de Aminoácido , Transducción de Señal
4.
Cancer Res ; 70(13): 5220-5, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530674

RESUMEN

Mouse studies indicate that the synthetic glucocorticoid dexamethasone (Dex) impairs the proliferation of granule neuron precursors in the cerebellum, which are transformed to medulloblastoma by activation of Sonic hedgehog (Shh) signaling. Here, we show that Dex treatment also inhibits Shh-induced tumor growth, enhancing the survival of tumor-prone transgenic mice. We found that Nmyc was specifically required in granule cells for Shh-induced tumorigenesis and that Dex acted to reduce Nmyc protein levels. Moreover, we found that Dex-induced destabilization of Nmyc is mediated by activation of glycogen synthase kinase 3beta, which targets Nmyc for proteasomal degradation. Together, our findings show that Dex antagonizes Shh signaling downstream of Smoothened in medulloblastoma.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Dexametasona/farmacología , Proteínas Hedgehog/metabolismo , Meduloblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Hedgehog/antagonistas & inhibidores , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA